Step |
Hyp |
Ref |
Expression |
1 |
|
fracerl.1 |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
fracerl.2 |
⊢ · = ( .r ‘ 𝑅 ) |
3 |
|
fracerl.3 |
⊢ ∼ = ( 𝑅 ~RL ( RLReg ‘ 𝑅 ) ) |
4 |
|
fracerl.4 |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
5 |
|
fracerl.5 |
⊢ ( 𝜑 → 𝐸 ∈ 𝐵 ) |
6 |
|
fracerl.6 |
⊢ ( 𝜑 → 𝐺 ∈ 𝐵 ) |
7 |
|
fracerl.7 |
⊢ ( 𝜑 → 𝐹 ∈ ( RLReg ‘ 𝑅 ) ) |
8 |
|
fracerl.8 |
⊢ ( 𝜑 → 𝐻 ∈ ( RLReg ‘ 𝑅 ) ) |
9 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
10 |
|
eqid |
⊢ ( -g ‘ 𝑅 ) = ( -g ‘ 𝑅 ) |
11 |
|
eqid |
⊢ ( 𝐵 × ( RLReg ‘ 𝑅 ) ) = ( 𝐵 × ( RLReg ‘ 𝑅 ) ) |
12 |
|
eqid |
⊢ { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ( 𝐵 × ( RLReg ‘ 𝑅 ) ) ∧ 𝑏 ∈ ( 𝐵 × ( RLReg ‘ 𝑅 ) ) ) ∧ ∃ 𝑡 ∈ ( RLReg ‘ 𝑅 ) ( 𝑡 · ( ( ( 1st ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) ( -g ‘ 𝑅 ) ( ( 1st ‘ 𝑏 ) · ( 2nd ‘ 𝑎 ) ) ) ) = ( 0g ‘ 𝑅 ) ) } = { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ( 𝐵 × ( RLReg ‘ 𝑅 ) ) ∧ 𝑏 ∈ ( 𝐵 × ( RLReg ‘ 𝑅 ) ) ) ∧ ∃ 𝑡 ∈ ( RLReg ‘ 𝑅 ) ( 𝑡 · ( ( ( 1st ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) ( -g ‘ 𝑅 ) ( ( 1st ‘ 𝑏 ) · ( 2nd ‘ 𝑎 ) ) ) ) = ( 0g ‘ 𝑅 ) ) } |
13 |
|
eqid |
⊢ ( RLReg ‘ 𝑅 ) = ( RLReg ‘ 𝑅 ) |
14 |
13 1
|
rrgss |
⊢ ( RLReg ‘ 𝑅 ) ⊆ 𝐵 |
15 |
14
|
a1i |
⊢ ( 𝜑 → ( RLReg ‘ 𝑅 ) ⊆ 𝐵 ) |
16 |
1 9 2 10 11 12 15
|
erlval |
⊢ ( 𝜑 → ( 𝑅 ~RL ( RLReg ‘ 𝑅 ) ) = { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ( 𝐵 × ( RLReg ‘ 𝑅 ) ) ∧ 𝑏 ∈ ( 𝐵 × ( RLReg ‘ 𝑅 ) ) ) ∧ ∃ 𝑡 ∈ ( RLReg ‘ 𝑅 ) ( 𝑡 · ( ( ( 1st ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) ( -g ‘ 𝑅 ) ( ( 1st ‘ 𝑏 ) · ( 2nd ‘ 𝑎 ) ) ) ) = ( 0g ‘ 𝑅 ) ) } ) |
17 |
3 16
|
eqtrid |
⊢ ( 𝜑 → ∼ = { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ( 𝐵 × ( RLReg ‘ 𝑅 ) ) ∧ 𝑏 ∈ ( 𝐵 × ( RLReg ‘ 𝑅 ) ) ) ∧ ∃ 𝑡 ∈ ( RLReg ‘ 𝑅 ) ( 𝑡 · ( ( ( 1st ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) ( -g ‘ 𝑅 ) ( ( 1st ‘ 𝑏 ) · ( 2nd ‘ 𝑎 ) ) ) ) = ( 0g ‘ 𝑅 ) ) } ) |
18 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑎 = 〈 𝐸 , 𝐹 〉 ∧ 𝑏 = 〈 𝐺 , 𝐻 〉 ) ) → 𝑎 = 〈 𝐸 , 𝐹 〉 ) |
19 |
18
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑎 = 〈 𝐸 , 𝐹 〉 ∧ 𝑏 = 〈 𝐺 , 𝐻 〉 ) ) → ( 1st ‘ 𝑎 ) = ( 1st ‘ 〈 𝐸 , 𝐹 〉 ) ) |
20 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 = 〈 𝐸 , 𝐹 〉 ∧ 𝑏 = 〈 𝐺 , 𝐻 〉 ) ) → 𝐹 ∈ ( RLReg ‘ 𝑅 ) ) |
21 |
|
op1stg |
⊢ ( ( 𝐸 ∈ 𝐵 ∧ 𝐹 ∈ ( RLReg ‘ 𝑅 ) ) → ( 1st ‘ 〈 𝐸 , 𝐹 〉 ) = 𝐸 ) |
22 |
5 20 21
|
syl2an2r |
⊢ ( ( 𝜑 ∧ ( 𝑎 = 〈 𝐸 , 𝐹 〉 ∧ 𝑏 = 〈 𝐺 , 𝐻 〉 ) ) → ( 1st ‘ 〈 𝐸 , 𝐹 〉 ) = 𝐸 ) |
23 |
19 22
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑎 = 〈 𝐸 , 𝐹 〉 ∧ 𝑏 = 〈 𝐺 , 𝐻 〉 ) ) → ( 1st ‘ 𝑎 ) = 𝐸 ) |
24 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑎 = 〈 𝐸 , 𝐹 〉 ∧ 𝑏 = 〈 𝐺 , 𝐻 〉 ) ) → 𝑏 = 〈 𝐺 , 𝐻 〉 ) |
25 |
24
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑎 = 〈 𝐸 , 𝐹 〉 ∧ 𝑏 = 〈 𝐺 , 𝐻 〉 ) ) → ( 2nd ‘ 𝑏 ) = ( 2nd ‘ 〈 𝐺 , 𝐻 〉 ) ) |
26 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 = 〈 𝐸 , 𝐹 〉 ∧ 𝑏 = 〈 𝐺 , 𝐻 〉 ) ) → 𝐻 ∈ ( RLReg ‘ 𝑅 ) ) |
27 |
|
op2ndg |
⊢ ( ( 𝐺 ∈ 𝐵 ∧ 𝐻 ∈ ( RLReg ‘ 𝑅 ) ) → ( 2nd ‘ 〈 𝐺 , 𝐻 〉 ) = 𝐻 ) |
28 |
6 26 27
|
syl2an2r |
⊢ ( ( 𝜑 ∧ ( 𝑎 = 〈 𝐸 , 𝐹 〉 ∧ 𝑏 = 〈 𝐺 , 𝐻 〉 ) ) → ( 2nd ‘ 〈 𝐺 , 𝐻 〉 ) = 𝐻 ) |
29 |
25 28
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑎 = 〈 𝐸 , 𝐹 〉 ∧ 𝑏 = 〈 𝐺 , 𝐻 〉 ) ) → ( 2nd ‘ 𝑏 ) = 𝐻 ) |
30 |
23 29
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑎 = 〈 𝐸 , 𝐹 〉 ∧ 𝑏 = 〈 𝐺 , 𝐻 〉 ) ) → ( ( 1st ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) = ( 𝐸 · 𝐻 ) ) |
31 |
24
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑎 = 〈 𝐸 , 𝐹 〉 ∧ 𝑏 = 〈 𝐺 , 𝐻 〉 ) ) → ( 1st ‘ 𝑏 ) = ( 1st ‘ 〈 𝐺 , 𝐻 〉 ) ) |
32 |
|
op1stg |
⊢ ( ( 𝐺 ∈ 𝐵 ∧ 𝐻 ∈ ( RLReg ‘ 𝑅 ) ) → ( 1st ‘ 〈 𝐺 , 𝐻 〉 ) = 𝐺 ) |
33 |
6 26 32
|
syl2an2r |
⊢ ( ( 𝜑 ∧ ( 𝑎 = 〈 𝐸 , 𝐹 〉 ∧ 𝑏 = 〈 𝐺 , 𝐻 〉 ) ) → ( 1st ‘ 〈 𝐺 , 𝐻 〉 ) = 𝐺 ) |
34 |
31 33
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑎 = 〈 𝐸 , 𝐹 〉 ∧ 𝑏 = 〈 𝐺 , 𝐻 〉 ) ) → ( 1st ‘ 𝑏 ) = 𝐺 ) |
35 |
18
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑎 = 〈 𝐸 , 𝐹 〉 ∧ 𝑏 = 〈 𝐺 , 𝐻 〉 ) ) → ( 2nd ‘ 𝑎 ) = ( 2nd ‘ 〈 𝐸 , 𝐹 〉 ) ) |
36 |
|
op2ndg |
⊢ ( ( 𝐸 ∈ 𝐵 ∧ 𝐹 ∈ ( RLReg ‘ 𝑅 ) ) → ( 2nd ‘ 〈 𝐸 , 𝐹 〉 ) = 𝐹 ) |
37 |
5 20 36
|
syl2an2r |
⊢ ( ( 𝜑 ∧ ( 𝑎 = 〈 𝐸 , 𝐹 〉 ∧ 𝑏 = 〈 𝐺 , 𝐻 〉 ) ) → ( 2nd ‘ 〈 𝐸 , 𝐹 〉 ) = 𝐹 ) |
38 |
35 37
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑎 = 〈 𝐸 , 𝐹 〉 ∧ 𝑏 = 〈 𝐺 , 𝐻 〉 ) ) → ( 2nd ‘ 𝑎 ) = 𝐹 ) |
39 |
34 38
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑎 = 〈 𝐸 , 𝐹 〉 ∧ 𝑏 = 〈 𝐺 , 𝐻 〉 ) ) → ( ( 1st ‘ 𝑏 ) · ( 2nd ‘ 𝑎 ) ) = ( 𝐺 · 𝐹 ) ) |
40 |
30 39
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑎 = 〈 𝐸 , 𝐹 〉 ∧ 𝑏 = 〈 𝐺 , 𝐻 〉 ) ) → ( ( ( 1st ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) ( -g ‘ 𝑅 ) ( ( 1st ‘ 𝑏 ) · ( 2nd ‘ 𝑎 ) ) ) = ( ( 𝐸 · 𝐻 ) ( -g ‘ 𝑅 ) ( 𝐺 · 𝐹 ) ) ) |
41 |
40
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑎 = 〈 𝐸 , 𝐹 〉 ∧ 𝑏 = 〈 𝐺 , 𝐻 〉 ) ) → ( 𝑡 · ( ( ( 1st ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) ( -g ‘ 𝑅 ) ( ( 1st ‘ 𝑏 ) · ( 2nd ‘ 𝑎 ) ) ) ) = ( 𝑡 · ( ( 𝐸 · 𝐻 ) ( -g ‘ 𝑅 ) ( 𝐺 · 𝐹 ) ) ) ) |
42 |
41
|
eqeq1d |
⊢ ( ( 𝜑 ∧ ( 𝑎 = 〈 𝐸 , 𝐹 〉 ∧ 𝑏 = 〈 𝐺 , 𝐻 〉 ) ) → ( ( 𝑡 · ( ( ( 1st ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) ( -g ‘ 𝑅 ) ( ( 1st ‘ 𝑏 ) · ( 2nd ‘ 𝑎 ) ) ) ) = ( 0g ‘ 𝑅 ) ↔ ( 𝑡 · ( ( 𝐸 · 𝐻 ) ( -g ‘ 𝑅 ) ( 𝐺 · 𝐹 ) ) ) = ( 0g ‘ 𝑅 ) ) ) |
43 |
42
|
rexbidv |
⊢ ( ( 𝜑 ∧ ( 𝑎 = 〈 𝐸 , 𝐹 〉 ∧ 𝑏 = 〈 𝐺 , 𝐻 〉 ) ) → ( ∃ 𝑡 ∈ ( RLReg ‘ 𝑅 ) ( 𝑡 · ( ( ( 1st ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) ( -g ‘ 𝑅 ) ( ( 1st ‘ 𝑏 ) · ( 2nd ‘ 𝑎 ) ) ) ) = ( 0g ‘ 𝑅 ) ↔ ∃ 𝑡 ∈ ( RLReg ‘ 𝑅 ) ( 𝑡 · ( ( 𝐸 · 𝐻 ) ( -g ‘ 𝑅 ) ( 𝐺 · 𝐹 ) ) ) = ( 0g ‘ 𝑅 ) ) ) |
44 |
17 43
|
brab2d |
⊢ ( 𝜑 → ( 〈 𝐸 , 𝐹 〉 ∼ 〈 𝐺 , 𝐻 〉 ↔ ( ( 〈 𝐸 , 𝐹 〉 ∈ ( 𝐵 × ( RLReg ‘ 𝑅 ) ) ∧ 〈 𝐺 , 𝐻 〉 ∈ ( 𝐵 × ( RLReg ‘ 𝑅 ) ) ) ∧ ∃ 𝑡 ∈ ( RLReg ‘ 𝑅 ) ( 𝑡 · ( ( 𝐸 · 𝐻 ) ( -g ‘ 𝑅 ) ( 𝐺 · 𝐹 ) ) ) = ( 0g ‘ 𝑅 ) ) ) ) |
45 |
5 7
|
opelxpd |
⊢ ( 𝜑 → 〈 𝐸 , 𝐹 〉 ∈ ( 𝐵 × ( RLReg ‘ 𝑅 ) ) ) |
46 |
6 8
|
opelxpd |
⊢ ( 𝜑 → 〈 𝐺 , 𝐻 〉 ∈ ( 𝐵 × ( RLReg ‘ 𝑅 ) ) ) |
47 |
45 46
|
jca |
⊢ ( 𝜑 → ( 〈 𝐸 , 𝐹 〉 ∈ ( 𝐵 × ( RLReg ‘ 𝑅 ) ) ∧ 〈 𝐺 , 𝐻 〉 ∈ ( 𝐵 × ( RLReg ‘ 𝑅 ) ) ) ) |
48 |
47
|
biantrurd |
⊢ ( 𝜑 → ( ∃ 𝑡 ∈ ( RLReg ‘ 𝑅 ) ( 𝑡 · ( ( 𝐸 · 𝐻 ) ( -g ‘ 𝑅 ) ( 𝐺 · 𝐹 ) ) ) = ( 0g ‘ 𝑅 ) ↔ ( ( 〈 𝐸 , 𝐹 〉 ∈ ( 𝐵 × ( RLReg ‘ 𝑅 ) ) ∧ 〈 𝐺 , 𝐻 〉 ∈ ( 𝐵 × ( RLReg ‘ 𝑅 ) ) ) ∧ ∃ 𝑡 ∈ ( RLReg ‘ 𝑅 ) ( 𝑡 · ( ( 𝐸 · 𝐻 ) ( -g ‘ 𝑅 ) ( 𝐺 · 𝐹 ) ) ) = ( 0g ‘ 𝑅 ) ) ) ) |
49 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( RLReg ‘ 𝑅 ) ) ∧ ( 𝑡 · ( ( 𝐸 · 𝐻 ) ( -g ‘ 𝑅 ) ( 𝐺 · 𝐹 ) ) ) = ( 0g ‘ 𝑅 ) ) → 𝑡 ∈ ( RLReg ‘ 𝑅 ) ) |
50 |
4
|
crnggrpd |
⊢ ( 𝜑 → 𝑅 ∈ Grp ) |
51 |
50
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( RLReg ‘ 𝑅 ) ) ∧ ( 𝑡 · ( ( 𝐸 · 𝐻 ) ( -g ‘ 𝑅 ) ( 𝐺 · 𝐹 ) ) ) = ( 0g ‘ 𝑅 ) ) → 𝑅 ∈ Grp ) |
52 |
4
|
crngringd |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
53 |
52
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( RLReg ‘ 𝑅 ) ) ∧ ( 𝑡 · ( ( 𝐸 · 𝐻 ) ( -g ‘ 𝑅 ) ( 𝐺 · 𝐹 ) ) ) = ( 0g ‘ 𝑅 ) ) → 𝑅 ∈ Ring ) |
54 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( RLReg ‘ 𝑅 ) ) ∧ ( 𝑡 · ( ( 𝐸 · 𝐻 ) ( -g ‘ 𝑅 ) ( 𝐺 · 𝐹 ) ) ) = ( 0g ‘ 𝑅 ) ) → 𝐸 ∈ 𝐵 ) |
55 |
14 8
|
sselid |
⊢ ( 𝜑 → 𝐻 ∈ 𝐵 ) |
56 |
55
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( RLReg ‘ 𝑅 ) ) ∧ ( 𝑡 · ( ( 𝐸 · 𝐻 ) ( -g ‘ 𝑅 ) ( 𝐺 · 𝐹 ) ) ) = ( 0g ‘ 𝑅 ) ) → 𝐻 ∈ 𝐵 ) |
57 |
1 2 53 54 56
|
ringcld |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( RLReg ‘ 𝑅 ) ) ∧ ( 𝑡 · ( ( 𝐸 · 𝐻 ) ( -g ‘ 𝑅 ) ( 𝐺 · 𝐹 ) ) ) = ( 0g ‘ 𝑅 ) ) → ( 𝐸 · 𝐻 ) ∈ 𝐵 ) |
58 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( RLReg ‘ 𝑅 ) ) ∧ ( 𝑡 · ( ( 𝐸 · 𝐻 ) ( -g ‘ 𝑅 ) ( 𝐺 · 𝐹 ) ) ) = ( 0g ‘ 𝑅 ) ) → 𝐺 ∈ 𝐵 ) |
59 |
14 7
|
sselid |
⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) |
60 |
59
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( RLReg ‘ 𝑅 ) ) ∧ ( 𝑡 · ( ( 𝐸 · 𝐻 ) ( -g ‘ 𝑅 ) ( 𝐺 · 𝐹 ) ) ) = ( 0g ‘ 𝑅 ) ) → 𝐹 ∈ 𝐵 ) |
61 |
1 2 53 58 60
|
ringcld |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( RLReg ‘ 𝑅 ) ) ∧ ( 𝑡 · ( ( 𝐸 · 𝐻 ) ( -g ‘ 𝑅 ) ( 𝐺 · 𝐹 ) ) ) = ( 0g ‘ 𝑅 ) ) → ( 𝐺 · 𝐹 ) ∈ 𝐵 ) |
62 |
1 10
|
grpsubcl |
⊢ ( ( 𝑅 ∈ Grp ∧ ( 𝐸 · 𝐻 ) ∈ 𝐵 ∧ ( 𝐺 · 𝐹 ) ∈ 𝐵 ) → ( ( 𝐸 · 𝐻 ) ( -g ‘ 𝑅 ) ( 𝐺 · 𝐹 ) ) ∈ 𝐵 ) |
63 |
51 57 61 62
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( RLReg ‘ 𝑅 ) ) ∧ ( 𝑡 · ( ( 𝐸 · 𝐻 ) ( -g ‘ 𝑅 ) ( 𝐺 · 𝐹 ) ) ) = ( 0g ‘ 𝑅 ) ) → ( ( 𝐸 · 𝐻 ) ( -g ‘ 𝑅 ) ( 𝐺 · 𝐹 ) ) ∈ 𝐵 ) |
64 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( RLReg ‘ 𝑅 ) ) ∧ ( 𝑡 · ( ( 𝐸 · 𝐻 ) ( -g ‘ 𝑅 ) ( 𝐺 · 𝐹 ) ) ) = ( 0g ‘ 𝑅 ) ) → ( 𝑡 · ( ( 𝐸 · 𝐻 ) ( -g ‘ 𝑅 ) ( 𝐺 · 𝐹 ) ) ) = ( 0g ‘ 𝑅 ) ) |
65 |
13 1 2 9
|
rrgeq0i |
⊢ ( ( 𝑡 ∈ ( RLReg ‘ 𝑅 ) ∧ ( ( 𝐸 · 𝐻 ) ( -g ‘ 𝑅 ) ( 𝐺 · 𝐹 ) ) ∈ 𝐵 ) → ( ( 𝑡 · ( ( 𝐸 · 𝐻 ) ( -g ‘ 𝑅 ) ( 𝐺 · 𝐹 ) ) ) = ( 0g ‘ 𝑅 ) → ( ( 𝐸 · 𝐻 ) ( -g ‘ 𝑅 ) ( 𝐺 · 𝐹 ) ) = ( 0g ‘ 𝑅 ) ) ) |
66 |
65
|
imp |
⊢ ( ( ( 𝑡 ∈ ( RLReg ‘ 𝑅 ) ∧ ( ( 𝐸 · 𝐻 ) ( -g ‘ 𝑅 ) ( 𝐺 · 𝐹 ) ) ∈ 𝐵 ) ∧ ( 𝑡 · ( ( 𝐸 · 𝐻 ) ( -g ‘ 𝑅 ) ( 𝐺 · 𝐹 ) ) ) = ( 0g ‘ 𝑅 ) ) → ( ( 𝐸 · 𝐻 ) ( -g ‘ 𝑅 ) ( 𝐺 · 𝐹 ) ) = ( 0g ‘ 𝑅 ) ) |
67 |
49 63 64 66
|
syl21anc |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( RLReg ‘ 𝑅 ) ) ∧ ( 𝑡 · ( ( 𝐸 · 𝐻 ) ( -g ‘ 𝑅 ) ( 𝐺 · 𝐹 ) ) ) = ( 0g ‘ 𝑅 ) ) → ( ( 𝐸 · 𝐻 ) ( -g ‘ 𝑅 ) ( 𝐺 · 𝐹 ) ) = ( 0g ‘ 𝑅 ) ) |
68 |
67
|
r19.29an |
⊢ ( ( 𝜑 ∧ ∃ 𝑡 ∈ ( RLReg ‘ 𝑅 ) ( 𝑡 · ( ( 𝐸 · 𝐻 ) ( -g ‘ 𝑅 ) ( 𝐺 · 𝐹 ) ) ) = ( 0g ‘ 𝑅 ) ) → ( ( 𝐸 · 𝐻 ) ( -g ‘ 𝑅 ) ( 𝐺 · 𝐹 ) ) = ( 0g ‘ 𝑅 ) ) |
69 |
|
oveq1 |
⊢ ( 𝑡 = ( 1r ‘ 𝑅 ) → ( 𝑡 · ( ( 𝐸 · 𝐻 ) ( -g ‘ 𝑅 ) ( 𝐺 · 𝐹 ) ) ) = ( ( 1r ‘ 𝑅 ) · ( ( 𝐸 · 𝐻 ) ( -g ‘ 𝑅 ) ( 𝐺 · 𝐹 ) ) ) ) |
70 |
69
|
eqeq1d |
⊢ ( 𝑡 = ( 1r ‘ 𝑅 ) → ( ( 𝑡 · ( ( 𝐸 · 𝐻 ) ( -g ‘ 𝑅 ) ( 𝐺 · 𝐹 ) ) ) = ( 0g ‘ 𝑅 ) ↔ ( ( 1r ‘ 𝑅 ) · ( ( 𝐸 · 𝐻 ) ( -g ‘ 𝑅 ) ( 𝐺 · 𝐹 ) ) ) = ( 0g ‘ 𝑅 ) ) ) |
71 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
72 |
71 13 52
|
1rrg |
⊢ ( 𝜑 → ( 1r ‘ 𝑅 ) ∈ ( RLReg ‘ 𝑅 ) ) |
73 |
72
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝐸 · 𝐻 ) ( -g ‘ 𝑅 ) ( 𝐺 · 𝐹 ) ) = ( 0g ‘ 𝑅 ) ) → ( 1r ‘ 𝑅 ) ∈ ( RLReg ‘ 𝑅 ) ) |
74 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( ( 𝐸 · 𝐻 ) ( -g ‘ 𝑅 ) ( 𝐺 · 𝐹 ) ) = ( 0g ‘ 𝑅 ) ) → ( ( 𝐸 · 𝐻 ) ( -g ‘ 𝑅 ) ( 𝐺 · 𝐹 ) ) = ( 0g ‘ 𝑅 ) ) |
75 |
74
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( ( 𝐸 · 𝐻 ) ( -g ‘ 𝑅 ) ( 𝐺 · 𝐹 ) ) = ( 0g ‘ 𝑅 ) ) → ( ( 1r ‘ 𝑅 ) · ( ( 𝐸 · 𝐻 ) ( -g ‘ 𝑅 ) ( 𝐺 · 𝐹 ) ) ) = ( ( 1r ‘ 𝑅 ) · ( 0g ‘ 𝑅 ) ) ) |
76 |
1 71
|
ringidcl |
⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑅 ) ∈ 𝐵 ) |
77 |
52 76
|
syl |
⊢ ( 𝜑 → ( 1r ‘ 𝑅 ) ∈ 𝐵 ) |
78 |
1 2 9 52 77
|
ringrzd |
⊢ ( 𝜑 → ( ( 1r ‘ 𝑅 ) · ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
79 |
78
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝐸 · 𝐻 ) ( -g ‘ 𝑅 ) ( 𝐺 · 𝐹 ) ) = ( 0g ‘ 𝑅 ) ) → ( ( 1r ‘ 𝑅 ) · ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
80 |
75 79
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( ( 𝐸 · 𝐻 ) ( -g ‘ 𝑅 ) ( 𝐺 · 𝐹 ) ) = ( 0g ‘ 𝑅 ) ) → ( ( 1r ‘ 𝑅 ) · ( ( 𝐸 · 𝐻 ) ( -g ‘ 𝑅 ) ( 𝐺 · 𝐹 ) ) ) = ( 0g ‘ 𝑅 ) ) |
81 |
70 73 80
|
rspcedvdw |
⊢ ( ( 𝜑 ∧ ( ( 𝐸 · 𝐻 ) ( -g ‘ 𝑅 ) ( 𝐺 · 𝐹 ) ) = ( 0g ‘ 𝑅 ) ) → ∃ 𝑡 ∈ ( RLReg ‘ 𝑅 ) ( 𝑡 · ( ( 𝐸 · 𝐻 ) ( -g ‘ 𝑅 ) ( 𝐺 · 𝐹 ) ) ) = ( 0g ‘ 𝑅 ) ) |
82 |
68 81
|
impbida |
⊢ ( 𝜑 → ( ∃ 𝑡 ∈ ( RLReg ‘ 𝑅 ) ( 𝑡 · ( ( 𝐸 · 𝐻 ) ( -g ‘ 𝑅 ) ( 𝐺 · 𝐹 ) ) ) = ( 0g ‘ 𝑅 ) ↔ ( ( 𝐸 · 𝐻 ) ( -g ‘ 𝑅 ) ( 𝐺 · 𝐹 ) ) = ( 0g ‘ 𝑅 ) ) ) |
83 |
44 48 82
|
3bitr2d |
⊢ ( 𝜑 → ( 〈 𝐸 , 𝐹 〉 ∼ 〈 𝐺 , 𝐻 〉 ↔ ( ( 𝐸 · 𝐻 ) ( -g ‘ 𝑅 ) ( 𝐺 · 𝐹 ) ) = ( 0g ‘ 𝑅 ) ) ) |
84 |
1 2 52 5 55
|
ringcld |
⊢ ( 𝜑 → ( 𝐸 · 𝐻 ) ∈ 𝐵 ) |
85 |
1 2 52 6 59
|
ringcld |
⊢ ( 𝜑 → ( 𝐺 · 𝐹 ) ∈ 𝐵 ) |
86 |
1 9 10
|
grpsubeq0 |
⊢ ( ( 𝑅 ∈ Grp ∧ ( 𝐸 · 𝐻 ) ∈ 𝐵 ∧ ( 𝐺 · 𝐹 ) ∈ 𝐵 ) → ( ( ( 𝐸 · 𝐻 ) ( -g ‘ 𝑅 ) ( 𝐺 · 𝐹 ) ) = ( 0g ‘ 𝑅 ) ↔ ( 𝐸 · 𝐻 ) = ( 𝐺 · 𝐹 ) ) ) |
87 |
50 84 85 86
|
syl3anc |
⊢ ( 𝜑 → ( ( ( 𝐸 · 𝐻 ) ( -g ‘ 𝑅 ) ( 𝐺 · 𝐹 ) ) = ( 0g ‘ 𝑅 ) ↔ ( 𝐸 · 𝐻 ) = ( 𝐺 · 𝐹 ) ) ) |
88 |
83 87
|
bitrd |
⊢ ( 𝜑 → ( 〈 𝐸 , 𝐹 〉 ∼ 〈 𝐺 , 𝐻 〉 ↔ ( 𝐸 · 𝐻 ) = ( 𝐺 · 𝐹 ) ) ) |