Step |
Hyp |
Ref |
Expression |
1 |
|
fracf1.1 |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
fracf1.2 |
⊢ 𝐸 = ( RLReg ‘ 𝑅 ) |
3 |
|
fracf1.3 |
⊢ 1 = ( 1r ‘ 𝑅 ) |
4 |
|
fracf1.4 |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
5 |
|
fracf1.5 |
⊢ ∼ = ( 𝑅 ~RL 𝐸 ) |
6 |
|
fracf1.6 |
⊢ 𝐹 = ( 𝑥 ∈ 𝐵 ↦ [ 〈 𝑥 , 1 〉 ] ∼ ) |
7 |
|
fracval |
⊢ ( Frac ‘ 𝑅 ) = ( 𝑅 RLocal ( RLReg ‘ 𝑅 ) ) |
8 |
2
|
oveq2i |
⊢ ( 𝑅 RLocal 𝐸 ) = ( 𝑅 RLocal ( RLReg ‘ 𝑅 ) ) |
9 |
7 8
|
eqtr4i |
⊢ ( Frac ‘ 𝑅 ) = ( 𝑅 RLocal 𝐸 ) |
10 |
|
eqid |
⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) |
11 |
4
|
crngringd |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
12 |
2 10 11
|
rrgsubm |
⊢ ( 𝜑 → 𝐸 ∈ ( SubMnd ‘ ( mulGrp ‘ 𝑅 ) ) ) |
13 |
|
ssidd |
⊢ ( 𝜑 → 𝐸 ⊆ 𝐸 ) |
14 |
13 2
|
sseqtrdi |
⊢ ( 𝜑 → 𝐸 ⊆ ( RLReg ‘ 𝑅 ) ) |
15 |
1 3 9 5 6 4 12 14
|
rlocf1 |
⊢ ( 𝜑 → ( 𝐹 : 𝐵 –1-1→ ( ( 𝐵 × 𝐸 ) / ∼ ) ∧ 𝐹 ∈ ( 𝑅 RingHom ( Frac ‘ 𝑅 ) ) ) ) |