Metamath Proof Explorer


Theorem fracf1

Description: The embedding of a commutative ring R into its field of fractions. (Contributed by Thierry Arnoux, 10-May-2025)

Ref Expression
Hypotheses fracf1.1 𝐵 = ( Base ‘ 𝑅 )
fracf1.2 𝐸 = ( RLReg ‘ 𝑅 )
fracf1.3 1 = ( 1r𝑅 )
fracf1.4 ( 𝜑𝑅 ∈ CRing )
fracf1.5 = ( 𝑅 ~RL 𝐸 )
fracf1.6 𝐹 = ( 𝑥𝐵 ↦ [ ⟨ 𝑥 , 1 ⟩ ] )
Assertion fracf1 ( 𝜑 → ( 𝐹 : 𝐵1-1→ ( ( 𝐵 × 𝐸 ) / ) ∧ 𝐹 ∈ ( 𝑅 RingHom ( Frac ‘ 𝑅 ) ) ) )

Proof

Step Hyp Ref Expression
1 fracf1.1 𝐵 = ( Base ‘ 𝑅 )
2 fracf1.2 𝐸 = ( RLReg ‘ 𝑅 )
3 fracf1.3 1 = ( 1r𝑅 )
4 fracf1.4 ( 𝜑𝑅 ∈ CRing )
5 fracf1.5 = ( 𝑅 ~RL 𝐸 )
6 fracf1.6 𝐹 = ( 𝑥𝐵 ↦ [ ⟨ 𝑥 , 1 ⟩ ] )
7 fracval ( Frac ‘ 𝑅 ) = ( 𝑅 RLocal ( RLReg ‘ 𝑅 ) )
8 2 oveq2i ( 𝑅 RLocal 𝐸 ) = ( 𝑅 RLocal ( RLReg ‘ 𝑅 ) )
9 7 8 eqtr4i ( Frac ‘ 𝑅 ) = ( 𝑅 RLocal 𝐸 )
10 eqid ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 )
11 4 crngringd ( 𝜑𝑅 ∈ Ring )
12 2 10 11 rrgsubm ( 𝜑𝐸 ∈ ( SubMnd ‘ ( mulGrp ‘ 𝑅 ) ) )
13 ssidd ( 𝜑𝐸𝐸 )
14 13 2 sseqtrdi ( 𝜑𝐸 ⊆ ( RLReg ‘ 𝑅 ) )
15 1 3 9 5 6 4 12 14 rlocf1 ( 𝜑 → ( 𝐹 : 𝐵1-1→ ( ( 𝐵 × 𝐸 ) / ) ∧ 𝐹 ∈ ( 𝑅 RingHom ( Frac ‘ 𝑅 ) ) ) )