Metamath Proof Explorer


Theorem fracval

Description: Value of the field of fractions. (Contributed by Thierry Arnoux, 5-May-2025)

Ref Expression
Assertion fracval ( Frac ‘ 𝑅 ) = ( 𝑅 RLocal ( RLReg ‘ 𝑅 ) )

Proof

Step Hyp Ref Expression
1 df-frac Frac = ( 𝑟 ∈ V ↦ ( 𝑟 RLocal ( RLReg ‘ 𝑟 ) ) )
2 id ( 𝑟 = 𝑅𝑟 = 𝑅 )
3 fveq2 ( 𝑟 = 𝑅 → ( RLReg ‘ 𝑟 ) = ( RLReg ‘ 𝑅 ) )
4 2 3 oveq12d ( 𝑟 = 𝑅 → ( 𝑟 RLocal ( RLReg ‘ 𝑟 ) ) = ( 𝑅 RLocal ( RLReg ‘ 𝑅 ) ) )
5 4 adantl ( ( 𝑅 ∈ V ∧ 𝑟 = 𝑅 ) → ( 𝑟 RLocal ( RLReg ‘ 𝑟 ) ) = ( 𝑅 RLocal ( RLReg ‘ 𝑅 ) ) )
6 id ( 𝑅 ∈ V → 𝑅 ∈ V )
7 ovexd ( 𝑅 ∈ V → ( 𝑅 RLocal ( RLReg ‘ 𝑅 ) ) ∈ V )
8 1 5 6 7 fvmptd2 ( 𝑅 ∈ V → ( Frac ‘ 𝑅 ) = ( 𝑅 RLocal ( RLReg ‘ 𝑅 ) ) )
9 fvprc ( ¬ 𝑅 ∈ V → ( Frac ‘ 𝑅 ) = ∅ )
10 reldmrloc Rel dom RLocal
11 10 ovprc1 ( ¬ 𝑅 ∈ V → ( 𝑅 RLocal ( RLReg ‘ 𝑅 ) ) = ∅ )
12 9 11 eqtr4d ( ¬ 𝑅 ∈ V → ( Frac ‘ 𝑅 ) = ( 𝑅 RLocal ( RLReg ‘ 𝑅 ) ) )
13 8 12 pm2.61i ( Frac ‘ 𝑅 ) = ( 𝑅 RLocal ( RLReg ‘ 𝑅 ) )