Step |
Hyp |
Ref |
Expression |
1 |
|
df-frac |
⊢ Frac = ( 𝑟 ∈ V ↦ ( 𝑟 RLocal ( RLReg ‘ 𝑟 ) ) ) |
2 |
|
id |
⊢ ( 𝑟 = 𝑅 → 𝑟 = 𝑅 ) |
3 |
|
fveq2 |
⊢ ( 𝑟 = 𝑅 → ( RLReg ‘ 𝑟 ) = ( RLReg ‘ 𝑅 ) ) |
4 |
2 3
|
oveq12d |
⊢ ( 𝑟 = 𝑅 → ( 𝑟 RLocal ( RLReg ‘ 𝑟 ) ) = ( 𝑅 RLocal ( RLReg ‘ 𝑅 ) ) ) |
5 |
4
|
adantl |
⊢ ( ( 𝑅 ∈ V ∧ 𝑟 = 𝑅 ) → ( 𝑟 RLocal ( RLReg ‘ 𝑟 ) ) = ( 𝑅 RLocal ( RLReg ‘ 𝑅 ) ) ) |
6 |
|
id |
⊢ ( 𝑅 ∈ V → 𝑅 ∈ V ) |
7 |
|
ovexd |
⊢ ( 𝑅 ∈ V → ( 𝑅 RLocal ( RLReg ‘ 𝑅 ) ) ∈ V ) |
8 |
1 5 6 7
|
fvmptd2 |
⊢ ( 𝑅 ∈ V → ( Frac ‘ 𝑅 ) = ( 𝑅 RLocal ( RLReg ‘ 𝑅 ) ) ) |
9 |
|
fvprc |
⊢ ( ¬ 𝑅 ∈ V → ( Frac ‘ 𝑅 ) = ∅ ) |
10 |
|
reldmrloc |
⊢ Rel dom RLocal |
11 |
10
|
ovprc1 |
⊢ ( ¬ 𝑅 ∈ V → ( 𝑅 RLocal ( RLReg ‘ 𝑅 ) ) = ∅ ) |
12 |
9 11
|
eqtr4d |
⊢ ( ¬ 𝑅 ∈ V → ( Frac ‘ 𝑅 ) = ( 𝑅 RLocal ( RLReg ‘ 𝑅 ) ) ) |
13 |
8 12
|
pm2.61i |
⊢ ( Frac ‘ 𝑅 ) = ( 𝑅 RLocal ( RLReg ‘ 𝑅 ) ) |