Step |
Hyp |
Ref |
Expression |
1 |
|
frcond1.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
frcond1.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
3 |
1 2
|
frcond1 |
⊢ ( 𝐺 ∈ FriendGraph → ( ( 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐴 ≠ 𝐶 ) → ∃! 𝑏 ∈ 𝑉 { { 𝐴 , 𝑏 } , { 𝑏 , 𝐶 } } ⊆ 𝐸 ) ) |
4 |
3
|
imp |
⊢ ( ( 𝐺 ∈ FriendGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐴 ≠ 𝐶 ) ) → ∃! 𝑏 ∈ 𝑉 { { 𝐴 , 𝑏 } , { 𝑏 , 𝐶 } } ⊆ 𝐸 ) |
5 |
|
ssrab2 |
⊢ { 𝑏 ∈ 𝑉 ∣ { { 𝐴 , 𝑏 } , { 𝑏 , 𝐶 } } ⊆ 𝐸 } ⊆ 𝑉 |
6 |
|
sseq1 |
⊢ ( { 𝑏 ∈ 𝑉 ∣ { { 𝐴 , 𝑏 } , { 𝑏 , 𝐶 } } ⊆ 𝐸 } = { 𝑥 } → ( { 𝑏 ∈ 𝑉 ∣ { { 𝐴 , 𝑏 } , { 𝑏 , 𝐶 } } ⊆ 𝐸 } ⊆ 𝑉 ↔ { 𝑥 } ⊆ 𝑉 ) ) |
7 |
5 6
|
mpbii |
⊢ ( { 𝑏 ∈ 𝑉 ∣ { { 𝐴 , 𝑏 } , { 𝑏 , 𝐶 } } ⊆ 𝐸 } = { 𝑥 } → { 𝑥 } ⊆ 𝑉 ) |
8 |
|
vex |
⊢ 𝑥 ∈ V |
9 |
8
|
snss |
⊢ ( 𝑥 ∈ 𝑉 ↔ { 𝑥 } ⊆ 𝑉 ) |
10 |
7 9
|
sylibr |
⊢ ( { 𝑏 ∈ 𝑉 ∣ { { 𝐴 , 𝑏 } , { 𝑏 , 𝐶 } } ⊆ 𝐸 } = { 𝑥 } → 𝑥 ∈ 𝑉 ) |
11 |
10
|
adantl |
⊢ ( ( ( 𝐺 ∈ FriendGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐴 ≠ 𝐶 ) ) ∧ { 𝑏 ∈ 𝑉 ∣ { { 𝐴 , 𝑏 } , { 𝑏 , 𝐶 } } ⊆ 𝐸 } = { 𝑥 } ) → 𝑥 ∈ 𝑉 ) |
12 |
|
frgrusgr |
⊢ ( 𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph ) |
13 |
1 2
|
nbusgr |
⊢ ( 𝐺 ∈ USGraph → ( 𝐺 NeighbVtx 𝐴 ) = { 𝑏 ∈ 𝑉 ∣ { 𝐴 , 𝑏 } ∈ 𝐸 } ) |
14 |
1 2
|
nbusgr |
⊢ ( 𝐺 ∈ USGraph → ( 𝐺 NeighbVtx 𝐶 ) = { 𝑏 ∈ 𝑉 ∣ { 𝐶 , 𝑏 } ∈ 𝐸 } ) |
15 |
13 14
|
ineq12d |
⊢ ( 𝐺 ∈ USGraph → ( ( 𝐺 NeighbVtx 𝐴 ) ∩ ( 𝐺 NeighbVtx 𝐶 ) ) = ( { 𝑏 ∈ 𝑉 ∣ { 𝐴 , 𝑏 } ∈ 𝐸 } ∩ { 𝑏 ∈ 𝑉 ∣ { 𝐶 , 𝑏 } ∈ 𝐸 } ) ) |
16 |
12 15
|
syl |
⊢ ( 𝐺 ∈ FriendGraph → ( ( 𝐺 NeighbVtx 𝐴 ) ∩ ( 𝐺 NeighbVtx 𝐶 ) ) = ( { 𝑏 ∈ 𝑉 ∣ { 𝐴 , 𝑏 } ∈ 𝐸 } ∩ { 𝑏 ∈ 𝑉 ∣ { 𝐶 , 𝑏 } ∈ 𝐸 } ) ) |
17 |
16
|
adantr |
⊢ ( ( 𝐺 ∈ FriendGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐴 ≠ 𝐶 ) ) → ( ( 𝐺 NeighbVtx 𝐴 ) ∩ ( 𝐺 NeighbVtx 𝐶 ) ) = ( { 𝑏 ∈ 𝑉 ∣ { 𝐴 , 𝑏 } ∈ 𝐸 } ∩ { 𝑏 ∈ 𝑉 ∣ { 𝐶 , 𝑏 } ∈ 𝐸 } ) ) |
18 |
17
|
adantr |
⊢ ( ( ( 𝐺 ∈ FriendGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐴 ≠ 𝐶 ) ) ∧ { 𝑏 ∈ 𝑉 ∣ { { 𝐴 , 𝑏 } , { 𝑏 , 𝐶 } } ⊆ 𝐸 } = { 𝑥 } ) → ( ( 𝐺 NeighbVtx 𝐴 ) ∩ ( 𝐺 NeighbVtx 𝐶 ) ) = ( { 𝑏 ∈ 𝑉 ∣ { 𝐴 , 𝑏 } ∈ 𝐸 } ∩ { 𝑏 ∈ 𝑉 ∣ { 𝐶 , 𝑏 } ∈ 𝐸 } ) ) |
19 |
|
inrab |
⊢ ( { 𝑏 ∈ 𝑉 ∣ { 𝐴 , 𝑏 } ∈ 𝐸 } ∩ { 𝑏 ∈ 𝑉 ∣ { 𝐶 , 𝑏 } ∈ 𝐸 } ) = { 𝑏 ∈ 𝑉 ∣ ( { 𝐴 , 𝑏 } ∈ 𝐸 ∧ { 𝐶 , 𝑏 } ∈ 𝐸 ) } |
20 |
18 19
|
eqtrdi |
⊢ ( ( ( 𝐺 ∈ FriendGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐴 ≠ 𝐶 ) ) ∧ { 𝑏 ∈ 𝑉 ∣ { { 𝐴 , 𝑏 } , { 𝑏 , 𝐶 } } ⊆ 𝐸 } = { 𝑥 } ) → ( ( 𝐺 NeighbVtx 𝐴 ) ∩ ( 𝐺 NeighbVtx 𝐶 ) ) = { 𝑏 ∈ 𝑉 ∣ ( { 𝐴 , 𝑏 } ∈ 𝐸 ∧ { 𝐶 , 𝑏 } ∈ 𝐸 ) } ) |
21 |
|
prcom |
⊢ { 𝐶 , 𝑏 } = { 𝑏 , 𝐶 } |
22 |
21
|
eleq1i |
⊢ ( { 𝐶 , 𝑏 } ∈ 𝐸 ↔ { 𝑏 , 𝐶 } ∈ 𝐸 ) |
23 |
22
|
anbi2i |
⊢ ( ( { 𝐴 , 𝑏 } ∈ 𝐸 ∧ { 𝐶 , 𝑏 } ∈ 𝐸 ) ↔ ( { 𝐴 , 𝑏 } ∈ 𝐸 ∧ { 𝑏 , 𝐶 } ∈ 𝐸 ) ) |
24 |
|
prex |
⊢ { 𝐴 , 𝑏 } ∈ V |
25 |
|
prex |
⊢ { 𝑏 , 𝐶 } ∈ V |
26 |
24 25
|
prss |
⊢ ( ( { 𝐴 , 𝑏 } ∈ 𝐸 ∧ { 𝑏 , 𝐶 } ∈ 𝐸 ) ↔ { { 𝐴 , 𝑏 } , { 𝑏 , 𝐶 } } ⊆ 𝐸 ) |
27 |
23 26
|
bitri |
⊢ ( ( { 𝐴 , 𝑏 } ∈ 𝐸 ∧ { 𝐶 , 𝑏 } ∈ 𝐸 ) ↔ { { 𝐴 , 𝑏 } , { 𝑏 , 𝐶 } } ⊆ 𝐸 ) |
28 |
27
|
a1i |
⊢ ( ( ( 𝐺 ∈ FriendGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐴 ≠ 𝐶 ) ) ∧ 𝑏 ∈ 𝑉 ) → ( ( { 𝐴 , 𝑏 } ∈ 𝐸 ∧ { 𝐶 , 𝑏 } ∈ 𝐸 ) ↔ { { 𝐴 , 𝑏 } , { 𝑏 , 𝐶 } } ⊆ 𝐸 ) ) |
29 |
28
|
rabbidva |
⊢ ( ( 𝐺 ∈ FriendGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐴 ≠ 𝐶 ) ) → { 𝑏 ∈ 𝑉 ∣ ( { 𝐴 , 𝑏 } ∈ 𝐸 ∧ { 𝐶 , 𝑏 } ∈ 𝐸 ) } = { 𝑏 ∈ 𝑉 ∣ { { 𝐴 , 𝑏 } , { 𝑏 , 𝐶 } } ⊆ 𝐸 } ) |
30 |
29
|
adantr |
⊢ ( ( ( 𝐺 ∈ FriendGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐴 ≠ 𝐶 ) ) ∧ { 𝑏 ∈ 𝑉 ∣ { { 𝐴 , 𝑏 } , { 𝑏 , 𝐶 } } ⊆ 𝐸 } = { 𝑥 } ) → { 𝑏 ∈ 𝑉 ∣ ( { 𝐴 , 𝑏 } ∈ 𝐸 ∧ { 𝐶 , 𝑏 } ∈ 𝐸 ) } = { 𝑏 ∈ 𝑉 ∣ { { 𝐴 , 𝑏 } , { 𝑏 , 𝐶 } } ⊆ 𝐸 } ) |
31 |
|
simpr |
⊢ ( ( ( 𝐺 ∈ FriendGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐴 ≠ 𝐶 ) ) ∧ { 𝑏 ∈ 𝑉 ∣ { { 𝐴 , 𝑏 } , { 𝑏 , 𝐶 } } ⊆ 𝐸 } = { 𝑥 } ) → { 𝑏 ∈ 𝑉 ∣ { { 𝐴 , 𝑏 } , { 𝑏 , 𝐶 } } ⊆ 𝐸 } = { 𝑥 } ) |
32 |
20 30 31
|
3eqtrd |
⊢ ( ( ( 𝐺 ∈ FriendGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐴 ≠ 𝐶 ) ) ∧ { 𝑏 ∈ 𝑉 ∣ { { 𝐴 , 𝑏 } , { 𝑏 , 𝐶 } } ⊆ 𝐸 } = { 𝑥 } ) → ( ( 𝐺 NeighbVtx 𝐴 ) ∩ ( 𝐺 NeighbVtx 𝐶 ) ) = { 𝑥 } ) |
33 |
11 32
|
jca |
⊢ ( ( ( 𝐺 ∈ FriendGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐴 ≠ 𝐶 ) ) ∧ { 𝑏 ∈ 𝑉 ∣ { { 𝐴 , 𝑏 } , { 𝑏 , 𝐶 } } ⊆ 𝐸 } = { 𝑥 } ) → ( 𝑥 ∈ 𝑉 ∧ ( ( 𝐺 NeighbVtx 𝐴 ) ∩ ( 𝐺 NeighbVtx 𝐶 ) ) = { 𝑥 } ) ) |
34 |
33
|
ex |
⊢ ( ( 𝐺 ∈ FriendGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐴 ≠ 𝐶 ) ) → ( { 𝑏 ∈ 𝑉 ∣ { { 𝐴 , 𝑏 } , { 𝑏 , 𝐶 } } ⊆ 𝐸 } = { 𝑥 } → ( 𝑥 ∈ 𝑉 ∧ ( ( 𝐺 NeighbVtx 𝐴 ) ∩ ( 𝐺 NeighbVtx 𝐶 ) ) = { 𝑥 } ) ) ) |
35 |
34
|
eximdv |
⊢ ( ( 𝐺 ∈ FriendGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐴 ≠ 𝐶 ) ) → ( ∃ 𝑥 { 𝑏 ∈ 𝑉 ∣ { { 𝐴 , 𝑏 } , { 𝑏 , 𝐶 } } ⊆ 𝐸 } = { 𝑥 } → ∃ 𝑥 ( 𝑥 ∈ 𝑉 ∧ ( ( 𝐺 NeighbVtx 𝐴 ) ∩ ( 𝐺 NeighbVtx 𝐶 ) ) = { 𝑥 } ) ) ) |
36 |
|
reusn |
⊢ ( ∃! 𝑏 ∈ 𝑉 { { 𝐴 , 𝑏 } , { 𝑏 , 𝐶 } } ⊆ 𝐸 ↔ ∃ 𝑥 { 𝑏 ∈ 𝑉 ∣ { { 𝐴 , 𝑏 } , { 𝑏 , 𝐶 } } ⊆ 𝐸 } = { 𝑥 } ) |
37 |
|
df-rex |
⊢ ( ∃ 𝑥 ∈ 𝑉 ( ( 𝐺 NeighbVtx 𝐴 ) ∩ ( 𝐺 NeighbVtx 𝐶 ) ) = { 𝑥 } ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑉 ∧ ( ( 𝐺 NeighbVtx 𝐴 ) ∩ ( 𝐺 NeighbVtx 𝐶 ) ) = { 𝑥 } ) ) |
38 |
35 36 37
|
3imtr4g |
⊢ ( ( 𝐺 ∈ FriendGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐴 ≠ 𝐶 ) ) → ( ∃! 𝑏 ∈ 𝑉 { { 𝐴 , 𝑏 } , { 𝑏 , 𝐶 } } ⊆ 𝐸 → ∃ 𝑥 ∈ 𝑉 ( ( 𝐺 NeighbVtx 𝐴 ) ∩ ( 𝐺 NeighbVtx 𝐶 ) ) = { 𝑥 } ) ) |
39 |
4 38
|
mpd |
⊢ ( ( 𝐺 ∈ FriendGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐴 ≠ 𝐶 ) ) → ∃ 𝑥 ∈ 𝑉 ( ( 𝐺 NeighbVtx 𝐴 ) ∩ ( 𝐺 NeighbVtx 𝐶 ) ) = { 𝑥 } ) |
40 |
39
|
ex |
⊢ ( 𝐺 ∈ FriendGraph → ( ( 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐴 ≠ 𝐶 ) → ∃ 𝑥 ∈ 𝑉 ( ( 𝐺 NeighbVtx 𝐴 ) ∩ ( 𝐺 NeighbVtx 𝐶 ) ) = { 𝑥 } ) ) |