| Step | Hyp | Ref | Expression | 
						
							| 1 |  | frcond1.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | frcond1.e | ⊢ 𝐸  =  ( Edg ‘ 𝐺 ) | 
						
							| 3 | 1 2 | frcond1 | ⊢ ( 𝐺  ∈   FriendGraph   →  ( ( 𝐴  ∈  𝑉  ∧  𝐶  ∈  𝑉  ∧  𝐴  ≠  𝐶 )  →  ∃! 𝑏  ∈  𝑉 { { 𝐴 ,  𝑏 } ,  { 𝑏 ,  𝐶 } }  ⊆  𝐸 ) ) | 
						
							| 4 | 3 | imp | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  ( 𝐴  ∈  𝑉  ∧  𝐶  ∈  𝑉  ∧  𝐴  ≠  𝐶 ) )  →  ∃! 𝑏  ∈  𝑉 { { 𝐴 ,  𝑏 } ,  { 𝑏 ,  𝐶 } }  ⊆  𝐸 ) | 
						
							| 5 |  | ssrab2 | ⊢ { 𝑏  ∈  𝑉  ∣  { { 𝐴 ,  𝑏 } ,  { 𝑏 ,  𝐶 } }  ⊆  𝐸 }  ⊆  𝑉 | 
						
							| 6 |  | sseq1 | ⊢ ( { 𝑏  ∈  𝑉  ∣  { { 𝐴 ,  𝑏 } ,  { 𝑏 ,  𝐶 } }  ⊆  𝐸 }  =  { 𝑥 }  →  ( { 𝑏  ∈  𝑉  ∣  { { 𝐴 ,  𝑏 } ,  { 𝑏 ,  𝐶 } }  ⊆  𝐸 }  ⊆  𝑉  ↔  { 𝑥 }  ⊆  𝑉 ) ) | 
						
							| 7 | 5 6 | mpbii | ⊢ ( { 𝑏  ∈  𝑉  ∣  { { 𝐴 ,  𝑏 } ,  { 𝑏 ,  𝐶 } }  ⊆  𝐸 }  =  { 𝑥 }  →  { 𝑥 }  ⊆  𝑉 ) | 
						
							| 8 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 9 | 8 | snss | ⊢ ( 𝑥  ∈  𝑉  ↔  { 𝑥 }  ⊆  𝑉 ) | 
						
							| 10 | 7 9 | sylibr | ⊢ ( { 𝑏  ∈  𝑉  ∣  { { 𝐴 ,  𝑏 } ,  { 𝑏 ,  𝐶 } }  ⊆  𝐸 }  =  { 𝑥 }  →  𝑥  ∈  𝑉 ) | 
						
							| 11 | 10 | adantl | ⊢ ( ( ( 𝐺  ∈   FriendGraph   ∧  ( 𝐴  ∈  𝑉  ∧  𝐶  ∈  𝑉  ∧  𝐴  ≠  𝐶 ) )  ∧  { 𝑏  ∈  𝑉  ∣  { { 𝐴 ,  𝑏 } ,  { 𝑏 ,  𝐶 } }  ⊆  𝐸 }  =  { 𝑥 } )  →  𝑥  ∈  𝑉 ) | 
						
							| 12 |  | frgrusgr | ⊢ ( 𝐺  ∈   FriendGraph   →  𝐺  ∈  USGraph ) | 
						
							| 13 | 1 2 | nbusgr | ⊢ ( 𝐺  ∈  USGraph  →  ( 𝐺  NeighbVtx  𝐴 )  =  { 𝑏  ∈  𝑉  ∣  { 𝐴 ,  𝑏 }  ∈  𝐸 } ) | 
						
							| 14 | 1 2 | nbusgr | ⊢ ( 𝐺  ∈  USGraph  →  ( 𝐺  NeighbVtx  𝐶 )  =  { 𝑏  ∈  𝑉  ∣  { 𝐶 ,  𝑏 }  ∈  𝐸 } ) | 
						
							| 15 | 13 14 | ineq12d | ⊢ ( 𝐺  ∈  USGraph  →  ( ( 𝐺  NeighbVtx  𝐴 )  ∩  ( 𝐺  NeighbVtx  𝐶 ) )  =  ( { 𝑏  ∈  𝑉  ∣  { 𝐴 ,  𝑏 }  ∈  𝐸 }  ∩  { 𝑏  ∈  𝑉  ∣  { 𝐶 ,  𝑏 }  ∈  𝐸 } ) ) | 
						
							| 16 | 12 15 | syl | ⊢ ( 𝐺  ∈   FriendGraph   →  ( ( 𝐺  NeighbVtx  𝐴 )  ∩  ( 𝐺  NeighbVtx  𝐶 ) )  =  ( { 𝑏  ∈  𝑉  ∣  { 𝐴 ,  𝑏 }  ∈  𝐸 }  ∩  { 𝑏  ∈  𝑉  ∣  { 𝐶 ,  𝑏 }  ∈  𝐸 } ) ) | 
						
							| 17 | 16 | adantr | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  ( 𝐴  ∈  𝑉  ∧  𝐶  ∈  𝑉  ∧  𝐴  ≠  𝐶 ) )  →  ( ( 𝐺  NeighbVtx  𝐴 )  ∩  ( 𝐺  NeighbVtx  𝐶 ) )  =  ( { 𝑏  ∈  𝑉  ∣  { 𝐴 ,  𝑏 }  ∈  𝐸 }  ∩  { 𝑏  ∈  𝑉  ∣  { 𝐶 ,  𝑏 }  ∈  𝐸 } ) ) | 
						
							| 18 | 17 | adantr | ⊢ ( ( ( 𝐺  ∈   FriendGraph   ∧  ( 𝐴  ∈  𝑉  ∧  𝐶  ∈  𝑉  ∧  𝐴  ≠  𝐶 ) )  ∧  { 𝑏  ∈  𝑉  ∣  { { 𝐴 ,  𝑏 } ,  { 𝑏 ,  𝐶 } }  ⊆  𝐸 }  =  { 𝑥 } )  →  ( ( 𝐺  NeighbVtx  𝐴 )  ∩  ( 𝐺  NeighbVtx  𝐶 ) )  =  ( { 𝑏  ∈  𝑉  ∣  { 𝐴 ,  𝑏 }  ∈  𝐸 }  ∩  { 𝑏  ∈  𝑉  ∣  { 𝐶 ,  𝑏 }  ∈  𝐸 } ) ) | 
						
							| 19 |  | inrab | ⊢ ( { 𝑏  ∈  𝑉  ∣  { 𝐴 ,  𝑏 }  ∈  𝐸 }  ∩  { 𝑏  ∈  𝑉  ∣  { 𝐶 ,  𝑏 }  ∈  𝐸 } )  =  { 𝑏  ∈  𝑉  ∣  ( { 𝐴 ,  𝑏 }  ∈  𝐸  ∧  { 𝐶 ,  𝑏 }  ∈  𝐸 ) } | 
						
							| 20 | 18 19 | eqtrdi | ⊢ ( ( ( 𝐺  ∈   FriendGraph   ∧  ( 𝐴  ∈  𝑉  ∧  𝐶  ∈  𝑉  ∧  𝐴  ≠  𝐶 ) )  ∧  { 𝑏  ∈  𝑉  ∣  { { 𝐴 ,  𝑏 } ,  { 𝑏 ,  𝐶 } }  ⊆  𝐸 }  =  { 𝑥 } )  →  ( ( 𝐺  NeighbVtx  𝐴 )  ∩  ( 𝐺  NeighbVtx  𝐶 ) )  =  { 𝑏  ∈  𝑉  ∣  ( { 𝐴 ,  𝑏 }  ∈  𝐸  ∧  { 𝐶 ,  𝑏 }  ∈  𝐸 ) } ) | 
						
							| 21 |  | prcom | ⊢ { 𝐶 ,  𝑏 }  =  { 𝑏 ,  𝐶 } | 
						
							| 22 | 21 | eleq1i | ⊢ ( { 𝐶 ,  𝑏 }  ∈  𝐸  ↔  { 𝑏 ,  𝐶 }  ∈  𝐸 ) | 
						
							| 23 | 22 | anbi2i | ⊢ ( ( { 𝐴 ,  𝑏 }  ∈  𝐸  ∧  { 𝐶 ,  𝑏 }  ∈  𝐸 )  ↔  ( { 𝐴 ,  𝑏 }  ∈  𝐸  ∧  { 𝑏 ,  𝐶 }  ∈  𝐸 ) ) | 
						
							| 24 |  | prex | ⊢ { 𝐴 ,  𝑏 }  ∈  V | 
						
							| 25 |  | prex | ⊢ { 𝑏 ,  𝐶 }  ∈  V | 
						
							| 26 | 24 25 | prss | ⊢ ( ( { 𝐴 ,  𝑏 }  ∈  𝐸  ∧  { 𝑏 ,  𝐶 }  ∈  𝐸 )  ↔  { { 𝐴 ,  𝑏 } ,  { 𝑏 ,  𝐶 } }  ⊆  𝐸 ) | 
						
							| 27 | 23 26 | bitri | ⊢ ( ( { 𝐴 ,  𝑏 }  ∈  𝐸  ∧  { 𝐶 ,  𝑏 }  ∈  𝐸 )  ↔  { { 𝐴 ,  𝑏 } ,  { 𝑏 ,  𝐶 } }  ⊆  𝐸 ) | 
						
							| 28 | 27 | a1i | ⊢ ( ( ( 𝐺  ∈   FriendGraph   ∧  ( 𝐴  ∈  𝑉  ∧  𝐶  ∈  𝑉  ∧  𝐴  ≠  𝐶 ) )  ∧  𝑏  ∈  𝑉 )  →  ( ( { 𝐴 ,  𝑏 }  ∈  𝐸  ∧  { 𝐶 ,  𝑏 }  ∈  𝐸 )  ↔  { { 𝐴 ,  𝑏 } ,  { 𝑏 ,  𝐶 } }  ⊆  𝐸 ) ) | 
						
							| 29 | 28 | rabbidva | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  ( 𝐴  ∈  𝑉  ∧  𝐶  ∈  𝑉  ∧  𝐴  ≠  𝐶 ) )  →  { 𝑏  ∈  𝑉  ∣  ( { 𝐴 ,  𝑏 }  ∈  𝐸  ∧  { 𝐶 ,  𝑏 }  ∈  𝐸 ) }  =  { 𝑏  ∈  𝑉  ∣  { { 𝐴 ,  𝑏 } ,  { 𝑏 ,  𝐶 } }  ⊆  𝐸 } ) | 
						
							| 30 | 29 | adantr | ⊢ ( ( ( 𝐺  ∈   FriendGraph   ∧  ( 𝐴  ∈  𝑉  ∧  𝐶  ∈  𝑉  ∧  𝐴  ≠  𝐶 ) )  ∧  { 𝑏  ∈  𝑉  ∣  { { 𝐴 ,  𝑏 } ,  { 𝑏 ,  𝐶 } }  ⊆  𝐸 }  =  { 𝑥 } )  →  { 𝑏  ∈  𝑉  ∣  ( { 𝐴 ,  𝑏 }  ∈  𝐸  ∧  { 𝐶 ,  𝑏 }  ∈  𝐸 ) }  =  { 𝑏  ∈  𝑉  ∣  { { 𝐴 ,  𝑏 } ,  { 𝑏 ,  𝐶 } }  ⊆  𝐸 } ) | 
						
							| 31 |  | simpr | ⊢ ( ( ( 𝐺  ∈   FriendGraph   ∧  ( 𝐴  ∈  𝑉  ∧  𝐶  ∈  𝑉  ∧  𝐴  ≠  𝐶 ) )  ∧  { 𝑏  ∈  𝑉  ∣  { { 𝐴 ,  𝑏 } ,  { 𝑏 ,  𝐶 } }  ⊆  𝐸 }  =  { 𝑥 } )  →  { 𝑏  ∈  𝑉  ∣  { { 𝐴 ,  𝑏 } ,  { 𝑏 ,  𝐶 } }  ⊆  𝐸 }  =  { 𝑥 } ) | 
						
							| 32 | 20 30 31 | 3eqtrd | ⊢ ( ( ( 𝐺  ∈   FriendGraph   ∧  ( 𝐴  ∈  𝑉  ∧  𝐶  ∈  𝑉  ∧  𝐴  ≠  𝐶 ) )  ∧  { 𝑏  ∈  𝑉  ∣  { { 𝐴 ,  𝑏 } ,  { 𝑏 ,  𝐶 } }  ⊆  𝐸 }  =  { 𝑥 } )  →  ( ( 𝐺  NeighbVtx  𝐴 )  ∩  ( 𝐺  NeighbVtx  𝐶 ) )  =  { 𝑥 } ) | 
						
							| 33 | 11 32 | jca | ⊢ ( ( ( 𝐺  ∈   FriendGraph   ∧  ( 𝐴  ∈  𝑉  ∧  𝐶  ∈  𝑉  ∧  𝐴  ≠  𝐶 ) )  ∧  { 𝑏  ∈  𝑉  ∣  { { 𝐴 ,  𝑏 } ,  { 𝑏 ,  𝐶 } }  ⊆  𝐸 }  =  { 𝑥 } )  →  ( 𝑥  ∈  𝑉  ∧  ( ( 𝐺  NeighbVtx  𝐴 )  ∩  ( 𝐺  NeighbVtx  𝐶 ) )  =  { 𝑥 } ) ) | 
						
							| 34 | 33 | ex | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  ( 𝐴  ∈  𝑉  ∧  𝐶  ∈  𝑉  ∧  𝐴  ≠  𝐶 ) )  →  ( { 𝑏  ∈  𝑉  ∣  { { 𝐴 ,  𝑏 } ,  { 𝑏 ,  𝐶 } }  ⊆  𝐸 }  =  { 𝑥 }  →  ( 𝑥  ∈  𝑉  ∧  ( ( 𝐺  NeighbVtx  𝐴 )  ∩  ( 𝐺  NeighbVtx  𝐶 ) )  =  { 𝑥 } ) ) ) | 
						
							| 35 | 34 | eximdv | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  ( 𝐴  ∈  𝑉  ∧  𝐶  ∈  𝑉  ∧  𝐴  ≠  𝐶 ) )  →  ( ∃ 𝑥 { 𝑏  ∈  𝑉  ∣  { { 𝐴 ,  𝑏 } ,  { 𝑏 ,  𝐶 } }  ⊆  𝐸 }  =  { 𝑥 }  →  ∃ 𝑥 ( 𝑥  ∈  𝑉  ∧  ( ( 𝐺  NeighbVtx  𝐴 )  ∩  ( 𝐺  NeighbVtx  𝐶 ) )  =  { 𝑥 } ) ) ) | 
						
							| 36 |  | reusn | ⊢ ( ∃! 𝑏  ∈  𝑉 { { 𝐴 ,  𝑏 } ,  { 𝑏 ,  𝐶 } }  ⊆  𝐸  ↔  ∃ 𝑥 { 𝑏  ∈  𝑉  ∣  { { 𝐴 ,  𝑏 } ,  { 𝑏 ,  𝐶 } }  ⊆  𝐸 }  =  { 𝑥 } ) | 
						
							| 37 |  | df-rex | ⊢ ( ∃ 𝑥  ∈  𝑉 ( ( 𝐺  NeighbVtx  𝐴 )  ∩  ( 𝐺  NeighbVtx  𝐶 ) )  =  { 𝑥 }  ↔  ∃ 𝑥 ( 𝑥  ∈  𝑉  ∧  ( ( 𝐺  NeighbVtx  𝐴 )  ∩  ( 𝐺  NeighbVtx  𝐶 ) )  =  { 𝑥 } ) ) | 
						
							| 38 | 35 36 37 | 3imtr4g | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  ( 𝐴  ∈  𝑉  ∧  𝐶  ∈  𝑉  ∧  𝐴  ≠  𝐶 ) )  →  ( ∃! 𝑏  ∈  𝑉 { { 𝐴 ,  𝑏 } ,  { 𝑏 ,  𝐶 } }  ⊆  𝐸  →  ∃ 𝑥  ∈  𝑉 ( ( 𝐺  NeighbVtx  𝐴 )  ∩  ( 𝐺  NeighbVtx  𝐶 ) )  =  { 𝑥 } ) ) | 
						
							| 39 | 4 38 | mpd | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  ( 𝐴  ∈  𝑉  ∧  𝐶  ∈  𝑉  ∧  𝐴  ≠  𝐶 ) )  →  ∃ 𝑥  ∈  𝑉 ( ( 𝐺  NeighbVtx  𝐴 )  ∩  ( 𝐺  NeighbVtx  𝐶 ) )  =  { 𝑥 } ) | 
						
							| 40 | 39 | ex | ⊢ ( 𝐺  ∈   FriendGraph   →  ( ( 𝐴  ∈  𝑉  ∧  𝐶  ∈  𝑉  ∧  𝐴  ≠  𝐶 )  →  ∃ 𝑥  ∈  𝑉 ( ( 𝐺  NeighbVtx  𝐴 )  ∩  ( 𝐺  NeighbVtx  𝐶 ) )  =  { 𝑥 } ) ) |