Step |
Hyp |
Ref |
Expression |
1 |
|
frcond1.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
frcond1.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
3 |
1 2
|
frcond3 |
⊢ ( 𝐺 ∈ FriendGraph → ( ( 𝑘 ∈ 𝑉 ∧ 𝑙 ∈ 𝑉 ∧ 𝑘 ≠ 𝑙 ) → ∃ 𝑥 ∈ 𝑉 ( ( 𝐺 NeighbVtx 𝑘 ) ∩ ( 𝐺 NeighbVtx 𝑙 ) ) = { 𝑥 } ) ) |
4 |
|
eldifsn |
⊢ ( 𝑙 ∈ ( 𝑉 ∖ { 𝑘 } ) ↔ ( 𝑙 ∈ 𝑉 ∧ 𝑙 ≠ 𝑘 ) ) |
5 |
|
necom |
⊢ ( 𝑙 ≠ 𝑘 ↔ 𝑘 ≠ 𝑙 ) |
6 |
5
|
biimpi |
⊢ ( 𝑙 ≠ 𝑘 → 𝑘 ≠ 𝑙 ) |
7 |
6
|
anim2i |
⊢ ( ( 𝑙 ∈ 𝑉 ∧ 𝑙 ≠ 𝑘 ) → ( 𝑙 ∈ 𝑉 ∧ 𝑘 ≠ 𝑙 ) ) |
8 |
4 7
|
sylbi |
⊢ ( 𝑙 ∈ ( 𝑉 ∖ { 𝑘 } ) → ( 𝑙 ∈ 𝑉 ∧ 𝑘 ≠ 𝑙 ) ) |
9 |
8
|
anim2i |
⊢ ( ( 𝑘 ∈ 𝑉 ∧ 𝑙 ∈ ( 𝑉 ∖ { 𝑘 } ) ) → ( 𝑘 ∈ 𝑉 ∧ ( 𝑙 ∈ 𝑉 ∧ 𝑘 ≠ 𝑙 ) ) ) |
10 |
|
3anass |
⊢ ( ( 𝑘 ∈ 𝑉 ∧ 𝑙 ∈ 𝑉 ∧ 𝑘 ≠ 𝑙 ) ↔ ( 𝑘 ∈ 𝑉 ∧ ( 𝑙 ∈ 𝑉 ∧ 𝑘 ≠ 𝑙 ) ) ) |
11 |
9 10
|
sylibr |
⊢ ( ( 𝑘 ∈ 𝑉 ∧ 𝑙 ∈ ( 𝑉 ∖ { 𝑘 } ) ) → ( 𝑘 ∈ 𝑉 ∧ 𝑙 ∈ 𝑉 ∧ 𝑘 ≠ 𝑙 ) ) |
12 |
3 11
|
impel |
⊢ ( ( 𝐺 ∈ FriendGraph ∧ ( 𝑘 ∈ 𝑉 ∧ 𝑙 ∈ ( 𝑉 ∖ { 𝑘 } ) ) ) → ∃ 𝑥 ∈ 𝑉 ( ( 𝐺 NeighbVtx 𝑘 ) ∩ ( 𝐺 NeighbVtx 𝑙 ) ) = { 𝑥 } ) |
13 |
12
|
ralrimivva |
⊢ ( 𝐺 ∈ FriendGraph → ∀ 𝑘 ∈ 𝑉 ∀ 𝑙 ∈ ( 𝑉 ∖ { 𝑘 } ) ∃ 𝑥 ∈ 𝑉 ( ( 𝐺 NeighbVtx 𝑘 ) ∩ ( 𝐺 NeighbVtx 𝑙 ) ) = { 𝑥 } ) |