| Step | Hyp | Ref | Expression | 
						
							| 1 |  | breq | ⊢ ( 𝑅  =  𝑆  →  ( 𝑧 𝑅 𝑦  ↔  𝑧 𝑆 𝑦 ) ) | 
						
							| 2 | 1 | notbid | ⊢ ( 𝑅  =  𝑆  →  ( ¬  𝑧 𝑅 𝑦  ↔  ¬  𝑧 𝑆 𝑦 ) ) | 
						
							| 3 | 2 | rexralbidv | ⊢ ( 𝑅  =  𝑆  →  ( ∃ 𝑦  ∈  𝑥 ∀ 𝑧  ∈  𝑥 ¬  𝑧 𝑅 𝑦  ↔  ∃ 𝑦  ∈  𝑥 ∀ 𝑧  ∈  𝑥 ¬  𝑧 𝑆 𝑦 ) ) | 
						
							| 4 | 3 | imbi2d | ⊢ ( 𝑅  =  𝑆  →  ( ( ( 𝑥  ⊆  𝐴  ∧  𝑥  ≠  ∅ )  →  ∃ 𝑦  ∈  𝑥 ∀ 𝑧  ∈  𝑥 ¬  𝑧 𝑅 𝑦 )  ↔  ( ( 𝑥  ⊆  𝐴  ∧  𝑥  ≠  ∅ )  →  ∃ 𝑦  ∈  𝑥 ∀ 𝑧  ∈  𝑥 ¬  𝑧 𝑆 𝑦 ) ) ) | 
						
							| 5 | 4 | albidv | ⊢ ( 𝑅  =  𝑆  →  ( ∀ 𝑥 ( ( 𝑥  ⊆  𝐴  ∧  𝑥  ≠  ∅ )  →  ∃ 𝑦  ∈  𝑥 ∀ 𝑧  ∈  𝑥 ¬  𝑧 𝑅 𝑦 )  ↔  ∀ 𝑥 ( ( 𝑥  ⊆  𝐴  ∧  𝑥  ≠  ∅ )  →  ∃ 𝑦  ∈  𝑥 ∀ 𝑧  ∈  𝑥 ¬  𝑧 𝑆 𝑦 ) ) ) | 
						
							| 6 |  | df-fr | ⊢ ( 𝑅  Fr  𝐴  ↔  ∀ 𝑥 ( ( 𝑥  ⊆  𝐴  ∧  𝑥  ≠  ∅ )  →  ∃ 𝑦  ∈  𝑥 ∀ 𝑧  ∈  𝑥 ¬  𝑧 𝑅 𝑦 ) ) | 
						
							| 7 |  | df-fr | ⊢ ( 𝑆  Fr  𝐴  ↔  ∀ 𝑥 ( ( 𝑥  ⊆  𝐴  ∧  𝑥  ≠  ∅ )  →  ∃ 𝑦  ∈  𝑥 ∀ 𝑧  ∈  𝑥 ¬  𝑧 𝑆 𝑦 ) ) | 
						
							| 8 | 5 6 7 | 3bitr4g | ⊢ ( 𝑅  =  𝑆  →  ( 𝑅  Fr  𝐴  ↔  𝑆  Fr  𝐴 ) ) |