Description: Equality deduction for well-founded relations. (Contributed by Stefan O'Rear, 19-Jan-2015) (Proof shortened by Matthew House, 10-Sep-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | freq12d.1 | ⊢ ( 𝜑 → 𝑅 = 𝑆 ) | |
freq12d.2 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | ||
Assertion | freq12d | ⊢ ( 𝜑 → ( 𝑅 Fr 𝐴 ↔ 𝑆 Fr 𝐵 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | freq12d.1 | ⊢ ( 𝜑 → 𝑅 = 𝑆 ) | |
2 | freq12d.2 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
3 | freq1 | ⊢ ( 𝑅 = 𝑆 → ( 𝑅 Fr 𝐴 ↔ 𝑆 Fr 𝐴 ) ) | |
4 | freq2 | ⊢ ( 𝐴 = 𝐵 → ( 𝑆 Fr 𝐴 ↔ 𝑆 Fr 𝐵 ) ) | |
5 | 3 4 | sylan9bb | ⊢ ( ( 𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ) → ( 𝑅 Fr 𝐴 ↔ 𝑆 Fr 𝐵 ) ) |
6 | 1 2 5 | syl2anc | ⊢ ( 𝜑 → ( 𝑅 Fr 𝐴 ↔ 𝑆 Fr 𝐵 ) ) |