Description: Equality theorem for the well-founded predicate. (Contributed by NM, 3-Apr-1994)
Ref | Expression | ||
---|---|---|---|
Assertion | freq2 | ⊢ ( 𝐴 = 𝐵 → ( 𝑅 Fr 𝐴 ↔ 𝑅 Fr 𝐵 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqimss2 | ⊢ ( 𝐴 = 𝐵 → 𝐵 ⊆ 𝐴 ) | |
2 | frss | ⊢ ( 𝐵 ⊆ 𝐴 → ( 𝑅 Fr 𝐴 → 𝑅 Fr 𝐵 ) ) | |
3 | 1 2 | syl | ⊢ ( 𝐴 = 𝐵 → ( 𝑅 Fr 𝐴 → 𝑅 Fr 𝐵 ) ) |
4 | eqimss | ⊢ ( 𝐴 = 𝐵 → 𝐴 ⊆ 𝐵 ) | |
5 | frss | ⊢ ( 𝐴 ⊆ 𝐵 → ( 𝑅 Fr 𝐵 → 𝑅 Fr 𝐴 ) ) | |
6 | 4 5 | syl | ⊢ ( 𝐴 = 𝐵 → ( 𝑅 Fr 𝐵 → 𝑅 Fr 𝐴 ) ) |
7 | 3 6 | impbid | ⊢ ( 𝐴 = 𝐵 → ( 𝑅 Fr 𝐴 ↔ 𝑅 Fr 𝐵 ) ) |