Description: Equality theorem for the well-founded predicate. (Contributed by NM, 3-Apr-1994)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | freq2 | ⊢ ( 𝐴 = 𝐵 → ( 𝑅 Fr 𝐴 ↔ 𝑅 Fr 𝐵 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqimss2 | ⊢ ( 𝐴 = 𝐵 → 𝐵 ⊆ 𝐴 ) | |
| 2 | frss | ⊢ ( 𝐵 ⊆ 𝐴 → ( 𝑅 Fr 𝐴 → 𝑅 Fr 𝐵 ) ) | |
| 3 | 1 2 | syl | ⊢ ( 𝐴 = 𝐵 → ( 𝑅 Fr 𝐴 → 𝑅 Fr 𝐵 ) ) | 
| 4 | eqimss | ⊢ ( 𝐴 = 𝐵 → 𝐴 ⊆ 𝐵 ) | |
| 5 | frss | ⊢ ( 𝐴 ⊆ 𝐵 → ( 𝑅 Fr 𝐵 → 𝑅 Fr 𝐴 ) ) | |
| 6 | 4 5 | syl | ⊢ ( 𝐴 = 𝐵 → ( 𝑅 Fr 𝐵 → 𝑅 Fr 𝐴 ) ) | 
| 7 | 3 6 | impbid | ⊢ ( 𝐴 = 𝐵 → ( 𝑅 Fr 𝐴 ↔ 𝑅 Fr 𝐵 ) ) |