Step |
Hyp |
Ref |
Expression |
1 |
|
simp1 |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐶 ∧ 𝐺 : 𝐵 ⟶ 𝐶 ∧ ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) = ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) ) → 𝐹 : 𝐴 ⟶ 𝐶 ) |
2 |
|
inss1 |
⊢ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐴 |
3 |
|
fssres |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐶 ∧ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐴 ) → ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) : ( 𝐴 ∩ 𝐵 ) ⟶ 𝐶 ) |
4 |
1 2 3
|
sylancl |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐶 ∧ 𝐺 : 𝐵 ⟶ 𝐶 ∧ ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) = ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) ) → ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) : ( 𝐴 ∩ 𝐵 ) ⟶ 𝐶 ) |
5 |
|
difss |
⊢ ( 𝐴 ∖ 𝐵 ) ⊆ 𝐴 |
6 |
|
fssres |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐶 ∧ ( 𝐴 ∖ 𝐵 ) ⊆ 𝐴 ) → ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) : ( 𝐴 ∖ 𝐵 ) ⟶ 𝐶 ) |
7 |
1 5 6
|
sylancl |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐶 ∧ 𝐺 : 𝐵 ⟶ 𝐶 ∧ ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) = ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) ) → ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) : ( 𝐴 ∖ 𝐵 ) ⟶ 𝐶 ) |
8 |
|
simp2 |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐶 ∧ 𝐺 : 𝐵 ⟶ 𝐶 ∧ ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) = ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) ) → 𝐺 : 𝐵 ⟶ 𝐶 ) |
9 |
|
difss |
⊢ ( 𝐵 ∖ 𝐴 ) ⊆ 𝐵 |
10 |
|
fssres |
⊢ ( ( 𝐺 : 𝐵 ⟶ 𝐶 ∧ ( 𝐵 ∖ 𝐴 ) ⊆ 𝐵 ) → ( 𝐺 ↾ ( 𝐵 ∖ 𝐴 ) ) : ( 𝐵 ∖ 𝐴 ) ⟶ 𝐶 ) |
11 |
8 9 10
|
sylancl |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐶 ∧ 𝐺 : 𝐵 ⟶ 𝐶 ∧ ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) = ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) ) → ( 𝐺 ↾ ( 𝐵 ∖ 𝐴 ) ) : ( 𝐵 ∖ 𝐴 ) ⟶ 𝐶 ) |
12 |
|
indifdir |
⊢ ( ( 𝐴 ∖ 𝐵 ) ∩ ( 𝐵 ∖ 𝐴 ) ) = ( ( 𝐴 ∩ ( 𝐵 ∖ 𝐴 ) ) ∖ ( 𝐵 ∩ ( 𝐵 ∖ 𝐴 ) ) ) |
13 |
|
disjdif |
⊢ ( 𝐴 ∩ ( 𝐵 ∖ 𝐴 ) ) = ∅ |
14 |
13
|
difeq1i |
⊢ ( ( 𝐴 ∩ ( 𝐵 ∖ 𝐴 ) ) ∖ ( 𝐵 ∩ ( 𝐵 ∖ 𝐴 ) ) ) = ( ∅ ∖ ( 𝐵 ∩ ( 𝐵 ∖ 𝐴 ) ) ) |
15 |
|
0dif |
⊢ ( ∅ ∖ ( 𝐵 ∩ ( 𝐵 ∖ 𝐴 ) ) ) = ∅ |
16 |
12 14 15
|
3eqtri |
⊢ ( ( 𝐴 ∖ 𝐵 ) ∩ ( 𝐵 ∖ 𝐴 ) ) = ∅ |
17 |
16
|
a1i |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐶 ∧ 𝐺 : 𝐵 ⟶ 𝐶 ∧ ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) = ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) ) → ( ( 𝐴 ∖ 𝐵 ) ∩ ( 𝐵 ∖ 𝐴 ) ) = ∅ ) |
18 |
7 11 17
|
fun2d |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐶 ∧ 𝐺 : 𝐵 ⟶ 𝐶 ∧ ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) = ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) ) → ( ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) ∪ ( 𝐺 ↾ ( 𝐵 ∖ 𝐴 ) ) ) : ( ( 𝐴 ∖ 𝐵 ) ∪ ( 𝐵 ∖ 𝐴 ) ) ⟶ 𝐶 ) |
19 |
|
indi |
⊢ ( ( 𝐴 ∩ 𝐵 ) ∩ ( ( 𝐴 ∖ 𝐵 ) ∪ ( 𝐵 ∖ 𝐴 ) ) ) = ( ( ( 𝐴 ∩ 𝐵 ) ∩ ( 𝐴 ∖ 𝐵 ) ) ∪ ( ( 𝐴 ∩ 𝐵 ) ∩ ( 𝐵 ∖ 𝐴 ) ) ) |
20 |
|
inass |
⊢ ( ( 𝐴 ∩ 𝐵 ) ∩ ( 𝐴 ∖ 𝐵 ) ) = ( 𝐴 ∩ ( 𝐵 ∩ ( 𝐴 ∖ 𝐵 ) ) ) |
21 |
|
disjdif |
⊢ ( 𝐵 ∩ ( 𝐴 ∖ 𝐵 ) ) = ∅ |
22 |
21
|
ineq2i |
⊢ ( 𝐴 ∩ ( 𝐵 ∩ ( 𝐴 ∖ 𝐵 ) ) ) = ( 𝐴 ∩ ∅ ) |
23 |
|
in0 |
⊢ ( 𝐴 ∩ ∅ ) = ∅ |
24 |
20 22 23
|
3eqtri |
⊢ ( ( 𝐴 ∩ 𝐵 ) ∩ ( 𝐴 ∖ 𝐵 ) ) = ∅ |
25 |
|
incom |
⊢ ( 𝐴 ∩ 𝐵 ) = ( 𝐵 ∩ 𝐴 ) |
26 |
25
|
ineq1i |
⊢ ( ( 𝐴 ∩ 𝐵 ) ∩ ( 𝐵 ∖ 𝐴 ) ) = ( ( 𝐵 ∩ 𝐴 ) ∩ ( 𝐵 ∖ 𝐴 ) ) |
27 |
|
inass |
⊢ ( ( 𝐵 ∩ 𝐴 ) ∩ ( 𝐵 ∖ 𝐴 ) ) = ( 𝐵 ∩ ( 𝐴 ∩ ( 𝐵 ∖ 𝐴 ) ) ) |
28 |
13
|
ineq2i |
⊢ ( 𝐵 ∩ ( 𝐴 ∩ ( 𝐵 ∖ 𝐴 ) ) ) = ( 𝐵 ∩ ∅ ) |
29 |
|
in0 |
⊢ ( 𝐵 ∩ ∅ ) = ∅ |
30 |
27 28 29
|
3eqtri |
⊢ ( ( 𝐵 ∩ 𝐴 ) ∩ ( 𝐵 ∖ 𝐴 ) ) = ∅ |
31 |
26 30
|
eqtri |
⊢ ( ( 𝐴 ∩ 𝐵 ) ∩ ( 𝐵 ∖ 𝐴 ) ) = ∅ |
32 |
24 31
|
uneq12i |
⊢ ( ( ( 𝐴 ∩ 𝐵 ) ∩ ( 𝐴 ∖ 𝐵 ) ) ∪ ( ( 𝐴 ∩ 𝐵 ) ∩ ( 𝐵 ∖ 𝐴 ) ) ) = ( ∅ ∪ ∅ ) |
33 |
|
un0 |
⊢ ( ∅ ∪ ∅ ) = ∅ |
34 |
19 32 33
|
3eqtri |
⊢ ( ( 𝐴 ∩ 𝐵 ) ∩ ( ( 𝐴 ∖ 𝐵 ) ∪ ( 𝐵 ∖ 𝐴 ) ) ) = ∅ |
35 |
34
|
a1i |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐶 ∧ 𝐺 : 𝐵 ⟶ 𝐶 ∧ ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) = ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) ) → ( ( 𝐴 ∩ 𝐵 ) ∩ ( ( 𝐴 ∖ 𝐵 ) ∪ ( 𝐵 ∖ 𝐴 ) ) ) = ∅ ) |
36 |
4 18 35
|
fun2d |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐶 ∧ 𝐺 : 𝐵 ⟶ 𝐶 ∧ ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) = ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) ) → ( ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) ∪ ( ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) ∪ ( 𝐺 ↾ ( 𝐵 ∖ 𝐴 ) ) ) ) : ( ( 𝐴 ∩ 𝐵 ) ∪ ( ( 𝐴 ∖ 𝐵 ) ∪ ( 𝐵 ∖ 𝐴 ) ) ) ⟶ 𝐶 ) |
37 |
|
un12 |
⊢ ( ( 𝐴 ∩ 𝐵 ) ∪ ( ( 𝐴 ∖ 𝐵 ) ∪ ( 𝐵 ∖ 𝐴 ) ) ) = ( ( 𝐴 ∖ 𝐵 ) ∪ ( ( 𝐴 ∩ 𝐵 ) ∪ ( 𝐵 ∖ 𝐴 ) ) ) |
38 |
25
|
uneq1i |
⊢ ( ( 𝐴 ∩ 𝐵 ) ∪ ( 𝐵 ∖ 𝐴 ) ) = ( ( 𝐵 ∩ 𝐴 ) ∪ ( 𝐵 ∖ 𝐴 ) ) |
39 |
|
inundif |
⊢ ( ( 𝐵 ∩ 𝐴 ) ∪ ( 𝐵 ∖ 𝐴 ) ) = 𝐵 |
40 |
38 39
|
eqtri |
⊢ ( ( 𝐴 ∩ 𝐵 ) ∪ ( 𝐵 ∖ 𝐴 ) ) = 𝐵 |
41 |
40
|
uneq2i |
⊢ ( ( 𝐴 ∖ 𝐵 ) ∪ ( ( 𝐴 ∩ 𝐵 ) ∪ ( 𝐵 ∖ 𝐴 ) ) ) = ( ( 𝐴 ∖ 𝐵 ) ∪ 𝐵 ) |
42 |
|
undif1 |
⊢ ( ( 𝐴 ∖ 𝐵 ) ∪ 𝐵 ) = ( 𝐴 ∪ 𝐵 ) |
43 |
37 41 42
|
3eqtri |
⊢ ( ( 𝐴 ∩ 𝐵 ) ∪ ( ( 𝐴 ∖ 𝐵 ) ∪ ( 𝐵 ∖ 𝐴 ) ) ) = ( 𝐴 ∪ 𝐵 ) |
44 |
43
|
feq2i |
⊢ ( ( ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) ∪ ( ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) ∪ ( 𝐺 ↾ ( 𝐵 ∖ 𝐴 ) ) ) ) : ( ( 𝐴 ∩ 𝐵 ) ∪ ( ( 𝐴 ∖ 𝐵 ) ∪ ( 𝐵 ∖ 𝐴 ) ) ) ⟶ 𝐶 ↔ ( ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) ∪ ( ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) ∪ ( 𝐺 ↾ ( 𝐵 ∖ 𝐴 ) ) ) ) : ( 𝐴 ∪ 𝐵 ) ⟶ 𝐶 ) |
45 |
|
ffn |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐶 → 𝐹 Fn 𝐴 ) |
46 |
|
ffn |
⊢ ( 𝐺 : 𝐵 ⟶ 𝐶 → 𝐺 Fn 𝐵 ) |
47 |
|
id |
⊢ ( ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) = ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) → ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) = ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) ) |
48 |
|
resasplit |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) = ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) ) → ( 𝐹 ∪ 𝐺 ) = ( ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) ∪ ( ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) ∪ ( 𝐺 ↾ ( 𝐵 ∖ 𝐴 ) ) ) ) ) |
49 |
45 46 47 48
|
syl3an |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐶 ∧ 𝐺 : 𝐵 ⟶ 𝐶 ∧ ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) = ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) ) → ( 𝐹 ∪ 𝐺 ) = ( ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) ∪ ( ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) ∪ ( 𝐺 ↾ ( 𝐵 ∖ 𝐴 ) ) ) ) ) |
50 |
49
|
feq1d |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐶 ∧ 𝐺 : 𝐵 ⟶ 𝐶 ∧ ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) = ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) ) → ( ( 𝐹 ∪ 𝐺 ) : ( 𝐴 ∪ 𝐵 ) ⟶ 𝐶 ↔ ( ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) ∪ ( ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) ∪ ( 𝐺 ↾ ( 𝐵 ∖ 𝐴 ) ) ) ) : ( 𝐴 ∪ 𝐵 ) ⟶ 𝐶 ) ) |
51 |
44 50
|
bitr4id |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐶 ∧ 𝐺 : 𝐵 ⟶ 𝐶 ∧ ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) = ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) ) → ( ( ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) ∪ ( ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) ∪ ( 𝐺 ↾ ( 𝐵 ∖ 𝐴 ) ) ) ) : ( ( 𝐴 ∩ 𝐵 ) ∪ ( ( 𝐴 ∖ 𝐵 ) ∪ ( 𝐵 ∖ 𝐴 ) ) ) ⟶ 𝐶 ↔ ( 𝐹 ∪ 𝐺 ) : ( 𝐴 ∪ 𝐵 ) ⟶ 𝐶 ) ) |
52 |
36 51
|
mpbid |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐶 ∧ 𝐺 : 𝐵 ⟶ 𝐶 ∧ ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) = ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) ) → ( 𝐹 ∪ 𝐺 ) : ( 𝐴 ∪ 𝐵 ) ⟶ 𝐶 ) |