Step |
Hyp |
Ref |
Expression |
1 |
|
uncom |
⊢ ( 𝐹 ∪ 𝐺 ) = ( 𝐺 ∪ 𝐹 ) |
2 |
1
|
reseq1i |
⊢ ( ( 𝐹 ∪ 𝐺 ) ↾ 𝐴 ) = ( ( 𝐺 ∪ 𝐹 ) ↾ 𝐴 ) |
3 |
|
incom |
⊢ ( 𝐴 ∩ 𝐵 ) = ( 𝐵 ∩ 𝐴 ) |
4 |
3
|
reseq2i |
⊢ ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) = ( 𝐹 ↾ ( 𝐵 ∩ 𝐴 ) ) |
5 |
3
|
reseq2i |
⊢ ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) = ( 𝐺 ↾ ( 𝐵 ∩ 𝐴 ) ) |
6 |
4 5
|
eqeq12i |
⊢ ( ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) = ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) ↔ ( 𝐹 ↾ ( 𝐵 ∩ 𝐴 ) ) = ( 𝐺 ↾ ( 𝐵 ∩ 𝐴 ) ) ) |
7 |
|
eqcom |
⊢ ( ( 𝐹 ↾ ( 𝐵 ∩ 𝐴 ) ) = ( 𝐺 ↾ ( 𝐵 ∩ 𝐴 ) ) ↔ ( 𝐺 ↾ ( 𝐵 ∩ 𝐴 ) ) = ( 𝐹 ↾ ( 𝐵 ∩ 𝐴 ) ) ) |
8 |
6 7
|
bitri |
⊢ ( ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) = ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) ↔ ( 𝐺 ↾ ( 𝐵 ∩ 𝐴 ) ) = ( 𝐹 ↾ ( 𝐵 ∩ 𝐴 ) ) ) |
9 |
|
fresaunres2 |
⊢ ( ( 𝐺 : 𝐵 ⟶ 𝐶 ∧ 𝐹 : 𝐴 ⟶ 𝐶 ∧ ( 𝐺 ↾ ( 𝐵 ∩ 𝐴 ) ) = ( 𝐹 ↾ ( 𝐵 ∩ 𝐴 ) ) ) → ( ( 𝐺 ∪ 𝐹 ) ↾ 𝐴 ) = 𝐹 ) |
10 |
9
|
3com12 |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐶 ∧ 𝐺 : 𝐵 ⟶ 𝐶 ∧ ( 𝐺 ↾ ( 𝐵 ∩ 𝐴 ) ) = ( 𝐹 ↾ ( 𝐵 ∩ 𝐴 ) ) ) → ( ( 𝐺 ∪ 𝐹 ) ↾ 𝐴 ) = 𝐹 ) |
11 |
8 10
|
syl3an3b |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐶 ∧ 𝐺 : 𝐵 ⟶ 𝐶 ∧ ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) = ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) ) → ( ( 𝐺 ∪ 𝐹 ) ↾ 𝐴 ) = 𝐹 ) |
12 |
2 11
|
eqtrid |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐶 ∧ 𝐺 : 𝐵 ⟶ 𝐶 ∧ ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) = ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) ) → ( ( 𝐹 ∪ 𝐺 ) ↾ 𝐴 ) = 𝐹 ) |