| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ffn |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐶 → 𝐹 Fn 𝐴 ) |
| 2 |
|
ffn |
⊢ ( 𝐺 : 𝐵 ⟶ 𝐶 → 𝐺 Fn 𝐵 ) |
| 3 |
|
id |
⊢ ( ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) = ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) → ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) = ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) ) |
| 4 |
|
resasplit |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) = ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) ) → ( 𝐹 ∪ 𝐺 ) = ( ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) ∪ ( ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) ∪ ( 𝐺 ↾ ( 𝐵 ∖ 𝐴 ) ) ) ) ) |
| 5 |
1 2 3 4
|
syl3an |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐶 ∧ 𝐺 : 𝐵 ⟶ 𝐶 ∧ ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) = ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) ) → ( 𝐹 ∪ 𝐺 ) = ( ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) ∪ ( ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) ∪ ( 𝐺 ↾ ( 𝐵 ∖ 𝐴 ) ) ) ) ) |
| 6 |
5
|
reseq1d |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐶 ∧ 𝐺 : 𝐵 ⟶ 𝐶 ∧ ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) = ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) ) → ( ( 𝐹 ∪ 𝐺 ) ↾ 𝐵 ) = ( ( ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) ∪ ( ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) ∪ ( 𝐺 ↾ ( 𝐵 ∖ 𝐴 ) ) ) ) ↾ 𝐵 ) ) |
| 7 |
|
resundir |
⊢ ( ( ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) ∪ ( ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) ∪ ( 𝐺 ↾ ( 𝐵 ∖ 𝐴 ) ) ) ) ↾ 𝐵 ) = ( ( ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) ↾ 𝐵 ) ∪ ( ( ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) ∪ ( 𝐺 ↾ ( 𝐵 ∖ 𝐴 ) ) ) ↾ 𝐵 ) ) |
| 8 |
|
inss2 |
⊢ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐵 |
| 9 |
|
resabs2 |
⊢ ( ( 𝐴 ∩ 𝐵 ) ⊆ 𝐵 → ( ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) ↾ 𝐵 ) = ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) ) |
| 10 |
8 9
|
ax-mp |
⊢ ( ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) ↾ 𝐵 ) = ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) |
| 11 |
|
resundir |
⊢ ( ( ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) ∪ ( 𝐺 ↾ ( 𝐵 ∖ 𝐴 ) ) ) ↾ 𝐵 ) = ( ( ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) ↾ 𝐵 ) ∪ ( ( 𝐺 ↾ ( 𝐵 ∖ 𝐴 ) ) ↾ 𝐵 ) ) |
| 12 |
10 11
|
uneq12i |
⊢ ( ( ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) ↾ 𝐵 ) ∪ ( ( ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) ∪ ( 𝐺 ↾ ( 𝐵 ∖ 𝐴 ) ) ) ↾ 𝐵 ) ) = ( ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) ∪ ( ( ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) ↾ 𝐵 ) ∪ ( ( 𝐺 ↾ ( 𝐵 ∖ 𝐴 ) ) ↾ 𝐵 ) ) ) |
| 13 |
|
dmres |
⊢ dom ( ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) ↾ 𝐵 ) = ( 𝐵 ∩ dom ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) ) |
| 14 |
|
dmres |
⊢ dom ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) = ( ( 𝐴 ∖ 𝐵 ) ∩ dom 𝐹 ) |
| 15 |
14
|
ineq2i |
⊢ ( 𝐵 ∩ dom ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) ) = ( 𝐵 ∩ ( ( 𝐴 ∖ 𝐵 ) ∩ dom 𝐹 ) ) |
| 16 |
|
disjdif |
⊢ ( 𝐵 ∩ ( 𝐴 ∖ 𝐵 ) ) = ∅ |
| 17 |
16
|
ineq1i |
⊢ ( ( 𝐵 ∩ ( 𝐴 ∖ 𝐵 ) ) ∩ dom 𝐹 ) = ( ∅ ∩ dom 𝐹 ) |
| 18 |
|
inass |
⊢ ( ( 𝐵 ∩ ( 𝐴 ∖ 𝐵 ) ) ∩ dom 𝐹 ) = ( 𝐵 ∩ ( ( 𝐴 ∖ 𝐵 ) ∩ dom 𝐹 ) ) |
| 19 |
|
0in |
⊢ ( ∅ ∩ dom 𝐹 ) = ∅ |
| 20 |
17 18 19
|
3eqtr3i |
⊢ ( 𝐵 ∩ ( ( 𝐴 ∖ 𝐵 ) ∩ dom 𝐹 ) ) = ∅ |
| 21 |
15 20
|
eqtri |
⊢ ( 𝐵 ∩ dom ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) ) = ∅ |
| 22 |
13 21
|
eqtri |
⊢ dom ( ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) ↾ 𝐵 ) = ∅ |
| 23 |
|
relres |
⊢ Rel ( ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) ↾ 𝐵 ) |
| 24 |
|
reldm0 |
⊢ ( Rel ( ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) ↾ 𝐵 ) → ( ( ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) ↾ 𝐵 ) = ∅ ↔ dom ( ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) ↾ 𝐵 ) = ∅ ) ) |
| 25 |
23 24
|
ax-mp |
⊢ ( ( ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) ↾ 𝐵 ) = ∅ ↔ dom ( ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) ↾ 𝐵 ) = ∅ ) |
| 26 |
22 25
|
mpbir |
⊢ ( ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) ↾ 𝐵 ) = ∅ |
| 27 |
|
difss |
⊢ ( 𝐵 ∖ 𝐴 ) ⊆ 𝐵 |
| 28 |
|
resabs2 |
⊢ ( ( 𝐵 ∖ 𝐴 ) ⊆ 𝐵 → ( ( 𝐺 ↾ ( 𝐵 ∖ 𝐴 ) ) ↾ 𝐵 ) = ( 𝐺 ↾ ( 𝐵 ∖ 𝐴 ) ) ) |
| 29 |
27 28
|
ax-mp |
⊢ ( ( 𝐺 ↾ ( 𝐵 ∖ 𝐴 ) ) ↾ 𝐵 ) = ( 𝐺 ↾ ( 𝐵 ∖ 𝐴 ) ) |
| 30 |
26 29
|
uneq12i |
⊢ ( ( ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) ↾ 𝐵 ) ∪ ( ( 𝐺 ↾ ( 𝐵 ∖ 𝐴 ) ) ↾ 𝐵 ) ) = ( ∅ ∪ ( 𝐺 ↾ ( 𝐵 ∖ 𝐴 ) ) ) |
| 31 |
30
|
uneq2i |
⊢ ( ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) ∪ ( ( ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) ↾ 𝐵 ) ∪ ( ( 𝐺 ↾ ( 𝐵 ∖ 𝐴 ) ) ↾ 𝐵 ) ) ) = ( ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) ∪ ( ∅ ∪ ( 𝐺 ↾ ( 𝐵 ∖ 𝐴 ) ) ) ) |
| 32 |
|
simp3 |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐶 ∧ 𝐺 : 𝐵 ⟶ 𝐶 ∧ ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) = ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) ) → ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) = ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) ) |
| 33 |
32
|
uneq1d |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐶 ∧ 𝐺 : 𝐵 ⟶ 𝐶 ∧ ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) = ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) ) → ( ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) ∪ ( ∅ ∪ ( 𝐺 ↾ ( 𝐵 ∖ 𝐴 ) ) ) ) = ( ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) ∪ ( ∅ ∪ ( 𝐺 ↾ ( 𝐵 ∖ 𝐴 ) ) ) ) ) |
| 34 |
|
uncom |
⊢ ( ∅ ∪ ( 𝐺 ↾ ( 𝐵 ∖ 𝐴 ) ) ) = ( ( 𝐺 ↾ ( 𝐵 ∖ 𝐴 ) ) ∪ ∅ ) |
| 35 |
|
un0 |
⊢ ( ( 𝐺 ↾ ( 𝐵 ∖ 𝐴 ) ) ∪ ∅ ) = ( 𝐺 ↾ ( 𝐵 ∖ 𝐴 ) ) |
| 36 |
34 35
|
eqtri |
⊢ ( ∅ ∪ ( 𝐺 ↾ ( 𝐵 ∖ 𝐴 ) ) ) = ( 𝐺 ↾ ( 𝐵 ∖ 𝐴 ) ) |
| 37 |
36
|
uneq2i |
⊢ ( ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) ∪ ( ∅ ∪ ( 𝐺 ↾ ( 𝐵 ∖ 𝐴 ) ) ) ) = ( ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) ∪ ( 𝐺 ↾ ( 𝐵 ∖ 𝐴 ) ) ) |
| 38 |
|
resundi |
⊢ ( 𝐺 ↾ ( ( 𝐴 ∩ 𝐵 ) ∪ ( 𝐵 ∖ 𝐴 ) ) ) = ( ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) ∪ ( 𝐺 ↾ ( 𝐵 ∖ 𝐴 ) ) ) |
| 39 |
|
incom |
⊢ ( 𝐴 ∩ 𝐵 ) = ( 𝐵 ∩ 𝐴 ) |
| 40 |
39
|
uneq1i |
⊢ ( ( 𝐴 ∩ 𝐵 ) ∪ ( 𝐵 ∖ 𝐴 ) ) = ( ( 𝐵 ∩ 𝐴 ) ∪ ( 𝐵 ∖ 𝐴 ) ) |
| 41 |
|
inundif |
⊢ ( ( 𝐵 ∩ 𝐴 ) ∪ ( 𝐵 ∖ 𝐴 ) ) = 𝐵 |
| 42 |
40 41
|
eqtri |
⊢ ( ( 𝐴 ∩ 𝐵 ) ∪ ( 𝐵 ∖ 𝐴 ) ) = 𝐵 |
| 43 |
42
|
reseq2i |
⊢ ( 𝐺 ↾ ( ( 𝐴 ∩ 𝐵 ) ∪ ( 𝐵 ∖ 𝐴 ) ) ) = ( 𝐺 ↾ 𝐵 ) |
| 44 |
|
fnresdm |
⊢ ( 𝐺 Fn 𝐵 → ( 𝐺 ↾ 𝐵 ) = 𝐺 ) |
| 45 |
2 44
|
syl |
⊢ ( 𝐺 : 𝐵 ⟶ 𝐶 → ( 𝐺 ↾ 𝐵 ) = 𝐺 ) |
| 46 |
45
|
adantl |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐶 ∧ 𝐺 : 𝐵 ⟶ 𝐶 ) → ( 𝐺 ↾ 𝐵 ) = 𝐺 ) |
| 47 |
43 46
|
eqtrid |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐶 ∧ 𝐺 : 𝐵 ⟶ 𝐶 ) → ( 𝐺 ↾ ( ( 𝐴 ∩ 𝐵 ) ∪ ( 𝐵 ∖ 𝐴 ) ) ) = 𝐺 ) |
| 48 |
38 47
|
eqtr3id |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐶 ∧ 𝐺 : 𝐵 ⟶ 𝐶 ) → ( ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) ∪ ( 𝐺 ↾ ( 𝐵 ∖ 𝐴 ) ) ) = 𝐺 ) |
| 49 |
37 48
|
eqtrid |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐶 ∧ 𝐺 : 𝐵 ⟶ 𝐶 ) → ( ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) ∪ ( ∅ ∪ ( 𝐺 ↾ ( 𝐵 ∖ 𝐴 ) ) ) ) = 𝐺 ) |
| 50 |
49
|
3adant3 |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐶 ∧ 𝐺 : 𝐵 ⟶ 𝐶 ∧ ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) = ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) ) → ( ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) ∪ ( ∅ ∪ ( 𝐺 ↾ ( 𝐵 ∖ 𝐴 ) ) ) ) = 𝐺 ) |
| 51 |
33 50
|
eqtrd |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐶 ∧ 𝐺 : 𝐵 ⟶ 𝐶 ∧ ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) = ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) ) → ( ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) ∪ ( ∅ ∪ ( 𝐺 ↾ ( 𝐵 ∖ 𝐴 ) ) ) ) = 𝐺 ) |
| 52 |
31 51
|
eqtrid |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐶 ∧ 𝐺 : 𝐵 ⟶ 𝐶 ∧ ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) = ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) ) → ( ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) ∪ ( ( ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) ↾ 𝐵 ) ∪ ( ( 𝐺 ↾ ( 𝐵 ∖ 𝐴 ) ) ↾ 𝐵 ) ) ) = 𝐺 ) |
| 53 |
12 52
|
eqtrid |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐶 ∧ 𝐺 : 𝐵 ⟶ 𝐶 ∧ ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) = ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) ) → ( ( ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) ↾ 𝐵 ) ∪ ( ( ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) ∪ ( 𝐺 ↾ ( 𝐵 ∖ 𝐴 ) ) ) ↾ 𝐵 ) ) = 𝐺 ) |
| 54 |
7 53
|
eqtrid |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐶 ∧ 𝐺 : 𝐵 ⟶ 𝐶 ∧ ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) = ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) ) → ( ( ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) ∪ ( ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) ∪ ( 𝐺 ↾ ( 𝐵 ∖ 𝐴 ) ) ) ) ↾ 𝐵 ) = 𝐺 ) |
| 55 |
6 54
|
eqtrd |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐶 ∧ 𝐺 : 𝐵 ⟶ 𝐶 ∧ ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) = ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) ) → ( ( 𝐹 ∪ 𝐺 ) ↾ 𝐵 ) = 𝐺 ) |