Metamath Proof Explorer


Theorem fresf1o

Description: Conditions for a restriction to be a one-to-one onto function. (Contributed by Thierry Arnoux, 7-Dec-2016)

Ref Expression
Assertion fresf1o ( ( Fun 𝐹𝐶 ⊆ ran 𝐹 ∧ Fun ( 𝐹𝐶 ) ) → ( 𝐹 ↾ ( 𝐹𝐶 ) ) : ( 𝐹𝐶 ) –1-1-onto𝐶 )

Proof

Step Hyp Ref Expression
1 funfn ( Fun ( 𝐹𝐶 ) ↔ ( 𝐹𝐶 ) Fn dom ( 𝐹𝐶 ) )
2 1 biimpi ( Fun ( 𝐹𝐶 ) → ( 𝐹𝐶 ) Fn dom ( 𝐹𝐶 ) )
3 2 3ad2ant3 ( ( Fun 𝐹𝐶 ⊆ ran 𝐹 ∧ Fun ( 𝐹𝐶 ) ) → ( 𝐹𝐶 ) Fn dom ( 𝐹𝐶 ) )
4 simp2 ( ( Fun 𝐹𝐶 ⊆ ran 𝐹 ∧ Fun ( 𝐹𝐶 ) ) → 𝐶 ⊆ ran 𝐹 )
5 df-rn ran 𝐹 = dom 𝐹
6 4 5 sseqtrdi ( ( Fun 𝐹𝐶 ⊆ ran 𝐹 ∧ Fun ( 𝐹𝐶 ) ) → 𝐶 ⊆ dom 𝐹 )
7 ssdmres ( 𝐶 ⊆ dom 𝐹 ↔ dom ( 𝐹𝐶 ) = 𝐶 )
8 6 7 sylib ( ( Fun 𝐹𝐶 ⊆ ran 𝐹 ∧ Fun ( 𝐹𝐶 ) ) → dom ( 𝐹𝐶 ) = 𝐶 )
9 8 fneq2d ( ( Fun 𝐹𝐶 ⊆ ran 𝐹 ∧ Fun ( 𝐹𝐶 ) ) → ( ( 𝐹𝐶 ) Fn dom ( 𝐹𝐶 ) ↔ ( 𝐹𝐶 ) Fn 𝐶 ) )
10 3 9 mpbid ( ( Fun 𝐹𝐶 ⊆ ran 𝐹 ∧ Fun ( 𝐹𝐶 ) ) → ( 𝐹𝐶 ) Fn 𝐶 )
11 simp1 ( ( Fun 𝐹𝐶 ⊆ ran 𝐹 ∧ Fun ( 𝐹𝐶 ) ) → Fun 𝐹 )
12 11 funresd ( ( Fun 𝐹𝐶 ⊆ ran 𝐹 ∧ Fun ( 𝐹𝐶 ) ) → Fun ( 𝐹 ↾ ( 𝐹𝐶 ) ) )
13 funcnvres2 ( Fun 𝐹 ( 𝐹𝐶 ) = ( 𝐹 ↾ ( 𝐹𝐶 ) ) )
14 11 13 syl ( ( Fun 𝐹𝐶 ⊆ ran 𝐹 ∧ Fun ( 𝐹𝐶 ) ) → ( 𝐹𝐶 ) = ( 𝐹 ↾ ( 𝐹𝐶 ) ) )
15 14 funeqd ( ( Fun 𝐹𝐶 ⊆ ran 𝐹 ∧ Fun ( 𝐹𝐶 ) ) → ( Fun ( 𝐹𝐶 ) ↔ Fun ( 𝐹 ↾ ( 𝐹𝐶 ) ) ) )
16 12 15 mpbird ( ( Fun 𝐹𝐶 ⊆ ran 𝐹 ∧ Fun ( 𝐹𝐶 ) ) → Fun ( 𝐹𝐶 ) )
17 df-ima ( 𝐹𝐶 ) = ran ( 𝐹𝐶 )
18 17 eqcomi ran ( 𝐹𝐶 ) = ( 𝐹𝐶 )
19 18 a1i ( ( Fun 𝐹𝐶 ⊆ ran 𝐹 ∧ Fun ( 𝐹𝐶 ) ) → ran ( 𝐹𝐶 ) = ( 𝐹𝐶 ) )
20 dff1o2 ( ( 𝐹𝐶 ) : 𝐶1-1-onto→ ( 𝐹𝐶 ) ↔ ( ( 𝐹𝐶 ) Fn 𝐶 ∧ Fun ( 𝐹𝐶 ) ∧ ran ( 𝐹𝐶 ) = ( 𝐹𝐶 ) ) )
21 10 16 19 20 syl3anbrc ( ( Fun 𝐹𝐶 ⊆ ran 𝐹 ∧ Fun ( 𝐹𝐶 ) ) → ( 𝐹𝐶 ) : 𝐶1-1-onto→ ( 𝐹𝐶 ) )
22 f1ocnv ( ( 𝐹𝐶 ) : 𝐶1-1-onto→ ( 𝐹𝐶 ) → ( 𝐹𝐶 ) : ( 𝐹𝐶 ) –1-1-onto𝐶 )
23 21 22 syl ( ( Fun 𝐹𝐶 ⊆ ran 𝐹 ∧ Fun ( 𝐹𝐶 ) ) → ( 𝐹𝐶 ) : ( 𝐹𝐶 ) –1-1-onto𝐶 )
24 f1oeq1 ( ( 𝐹𝐶 ) = ( 𝐹 ↾ ( 𝐹𝐶 ) ) → ( ( 𝐹𝐶 ) : ( 𝐹𝐶 ) –1-1-onto𝐶 ↔ ( 𝐹 ↾ ( 𝐹𝐶 ) ) : ( 𝐹𝐶 ) –1-1-onto𝐶 ) )
25 11 13 24 3syl ( ( Fun 𝐹𝐶 ⊆ ran 𝐹 ∧ Fun ( 𝐹𝐶 ) ) → ( ( 𝐹𝐶 ) : ( 𝐹𝐶 ) –1-1-onto𝐶 ↔ ( 𝐹 ↾ ( 𝐹𝐶 ) ) : ( 𝐹𝐶 ) –1-1-onto𝐶 ) )
26 23 25 mpbid ( ( Fun 𝐹𝐶 ⊆ ran 𝐹 ∧ Fun ( 𝐹𝐶 ) ) → ( 𝐹 ↾ ( 𝐹𝐶 ) ) : ( 𝐹𝐶 ) –1-1-onto𝐶 )