Step |
Hyp |
Ref |
Expression |
1 |
|
inss1 |
⊢ ( 𝐴 ∩ 𝑋 ) ⊆ 𝐴 |
2 |
|
fssres |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ( 𝐴 ∩ 𝑋 ) ⊆ 𝐴 ) → ( 𝐹 ↾ ( 𝐴 ∩ 𝑋 ) ) : ( 𝐴 ∩ 𝑋 ) ⟶ 𝐵 ) |
3 |
1 2
|
mpan2 |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( 𝐹 ↾ ( 𝐴 ∩ 𝑋 ) ) : ( 𝐴 ∩ 𝑋 ) ⟶ 𝐵 ) |
4 |
|
resres |
⊢ ( ( 𝐹 ↾ 𝐴 ) ↾ 𝑋 ) = ( 𝐹 ↾ ( 𝐴 ∩ 𝑋 ) ) |
5 |
|
ffn |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → 𝐹 Fn 𝐴 ) |
6 |
|
fnresdm |
⊢ ( 𝐹 Fn 𝐴 → ( 𝐹 ↾ 𝐴 ) = 𝐹 ) |
7 |
5 6
|
syl |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( 𝐹 ↾ 𝐴 ) = 𝐹 ) |
8 |
7
|
reseq1d |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( ( 𝐹 ↾ 𝐴 ) ↾ 𝑋 ) = ( 𝐹 ↾ 𝑋 ) ) |
9 |
4 8
|
eqtr3id |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( 𝐹 ↾ ( 𝐴 ∩ 𝑋 ) ) = ( 𝐹 ↾ 𝑋 ) ) |
10 |
9
|
feq1d |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( ( 𝐹 ↾ ( 𝐴 ∩ 𝑋 ) ) : ( 𝐴 ∩ 𝑋 ) ⟶ 𝐵 ↔ ( 𝐹 ↾ 𝑋 ) : ( 𝐴 ∩ 𝑋 ) ⟶ 𝐵 ) ) |
11 |
3 10
|
mpbid |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( 𝐹 ↾ 𝑋 ) : ( 𝐴 ∩ 𝑋 ) ⟶ 𝐵 ) |