Description: Restriction of a function with respect to the intersection with its domain. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fresin2 | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( 𝐹 ↾ ( 𝐶 ∩ 𝐴 ) ) = ( 𝐹 ↾ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fdm | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → dom 𝐹 = 𝐴 ) | |
| 2 | 1 | eqcomd | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → 𝐴 = dom 𝐹 ) |
| 3 | 2 | ineq2d | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( 𝐶 ∩ 𝐴 ) = ( 𝐶 ∩ dom 𝐹 ) ) |
| 4 | 3 | reseq2d | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( 𝐹 ↾ ( 𝐶 ∩ 𝐴 ) ) = ( 𝐹 ↾ ( 𝐶 ∩ dom 𝐹 ) ) ) |
| 5 | frel | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → Rel 𝐹 ) | |
| 6 | resindm | ⊢ ( Rel 𝐹 → ( 𝐹 ↾ ( 𝐶 ∩ dom 𝐹 ) ) = ( 𝐹 ↾ 𝐶 ) ) | |
| 7 | 5 6 | syl | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( 𝐹 ↾ ( 𝐶 ∩ dom 𝐹 ) ) = ( 𝐹 ↾ 𝐶 ) ) |
| 8 | 4 7 | eqtrd | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( 𝐹 ↾ ( 𝐶 ∩ 𝐴 ) ) = ( 𝐹 ↾ 𝐶 ) ) |