| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sneq |
⊢ ( 𝑥 = 𝐵 → { 𝑥 } = { 𝐵 } ) |
| 2 |
|
reseq2 |
⊢ ( { 𝑥 } = { 𝐵 } → ( 𝐹 ↾ { 𝑥 } ) = ( 𝐹 ↾ { 𝐵 } ) ) |
| 3 |
2
|
feq1d |
⊢ ( { 𝑥 } = { 𝐵 } → ( ( 𝐹 ↾ { 𝑥 } ) : { 𝑥 } ⟶ 𝐶 ↔ ( 𝐹 ↾ { 𝐵 } ) : { 𝑥 } ⟶ 𝐶 ) ) |
| 4 |
|
feq2 |
⊢ ( { 𝑥 } = { 𝐵 } → ( ( 𝐹 ↾ { 𝐵 } ) : { 𝑥 } ⟶ 𝐶 ↔ ( 𝐹 ↾ { 𝐵 } ) : { 𝐵 } ⟶ 𝐶 ) ) |
| 5 |
3 4
|
bitrd |
⊢ ( { 𝑥 } = { 𝐵 } → ( ( 𝐹 ↾ { 𝑥 } ) : { 𝑥 } ⟶ 𝐶 ↔ ( 𝐹 ↾ { 𝐵 } ) : { 𝐵 } ⟶ 𝐶 ) ) |
| 6 |
1 5
|
syl |
⊢ ( 𝑥 = 𝐵 → ( ( 𝐹 ↾ { 𝑥 } ) : { 𝑥 } ⟶ 𝐶 ↔ ( 𝐹 ↾ { 𝐵 } ) : { 𝐵 } ⟶ 𝐶 ) ) |
| 7 |
|
fveq2 |
⊢ ( 𝑥 = 𝐵 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝐵 ) ) |
| 8 |
7
|
eleq1d |
⊢ ( 𝑥 = 𝐵 → ( ( 𝐹 ‘ 𝑥 ) ∈ 𝐶 ↔ ( 𝐹 ‘ 𝐵 ) ∈ 𝐶 ) ) |
| 9 |
6 8
|
bibi12d |
⊢ ( 𝑥 = 𝐵 → ( ( ( 𝐹 ↾ { 𝑥 } ) : { 𝑥 } ⟶ 𝐶 ↔ ( 𝐹 ‘ 𝑥 ) ∈ 𝐶 ) ↔ ( ( 𝐹 ↾ { 𝐵 } ) : { 𝐵 } ⟶ 𝐶 ↔ ( 𝐹 ‘ 𝐵 ) ∈ 𝐶 ) ) ) |
| 10 |
9
|
imbi2d |
⊢ ( 𝑥 = 𝐵 → ( ( 𝐹 Fn 𝐴 → ( ( 𝐹 ↾ { 𝑥 } ) : { 𝑥 } ⟶ 𝐶 ↔ ( 𝐹 ‘ 𝑥 ) ∈ 𝐶 ) ) ↔ ( 𝐹 Fn 𝐴 → ( ( 𝐹 ↾ { 𝐵 } ) : { 𝐵 } ⟶ 𝐶 ↔ ( 𝐹 ‘ 𝐵 ) ∈ 𝐶 ) ) ) ) |
| 11 |
|
fnressn |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ↾ { 𝑥 } ) = { 〈 𝑥 , ( 𝐹 ‘ 𝑥 ) 〉 } ) |
| 12 |
|
vsnid |
⊢ 𝑥 ∈ { 𝑥 } |
| 13 |
|
fvres |
⊢ ( 𝑥 ∈ { 𝑥 } → ( ( 𝐹 ↾ { 𝑥 } ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 14 |
12 13
|
ax-mp |
⊢ ( ( 𝐹 ↾ { 𝑥 } ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) |
| 15 |
14
|
opeq2i |
⊢ 〈 𝑥 , ( ( 𝐹 ↾ { 𝑥 } ) ‘ 𝑥 ) 〉 = 〈 𝑥 , ( 𝐹 ‘ 𝑥 ) 〉 |
| 16 |
15
|
sneqi |
⊢ { 〈 𝑥 , ( ( 𝐹 ↾ { 𝑥 } ) ‘ 𝑥 ) 〉 } = { 〈 𝑥 , ( 𝐹 ‘ 𝑥 ) 〉 } |
| 17 |
16
|
eqeq2i |
⊢ ( ( 𝐹 ↾ { 𝑥 } ) = { 〈 𝑥 , ( ( 𝐹 ↾ { 𝑥 } ) ‘ 𝑥 ) 〉 } ↔ ( 𝐹 ↾ { 𝑥 } ) = { 〈 𝑥 , ( 𝐹 ‘ 𝑥 ) 〉 } ) |
| 18 |
|
vex |
⊢ 𝑥 ∈ V |
| 19 |
18
|
fsn2 |
⊢ ( ( 𝐹 ↾ { 𝑥 } ) : { 𝑥 } ⟶ 𝐶 ↔ ( ( ( 𝐹 ↾ { 𝑥 } ) ‘ 𝑥 ) ∈ 𝐶 ∧ ( 𝐹 ↾ { 𝑥 } ) = { 〈 𝑥 , ( ( 𝐹 ↾ { 𝑥 } ) ‘ 𝑥 ) 〉 } ) ) |
| 20 |
|
iba |
⊢ ( ( 𝐹 ↾ { 𝑥 } ) = { 〈 𝑥 , ( ( 𝐹 ↾ { 𝑥 } ) ‘ 𝑥 ) 〉 } → ( ( ( 𝐹 ↾ { 𝑥 } ) ‘ 𝑥 ) ∈ 𝐶 ↔ ( ( ( 𝐹 ↾ { 𝑥 } ) ‘ 𝑥 ) ∈ 𝐶 ∧ ( 𝐹 ↾ { 𝑥 } ) = { 〈 𝑥 , ( ( 𝐹 ↾ { 𝑥 } ) ‘ 𝑥 ) 〉 } ) ) ) |
| 21 |
14
|
eleq1i |
⊢ ( ( ( 𝐹 ↾ { 𝑥 } ) ‘ 𝑥 ) ∈ 𝐶 ↔ ( 𝐹 ‘ 𝑥 ) ∈ 𝐶 ) |
| 22 |
20 21
|
bitr3di |
⊢ ( ( 𝐹 ↾ { 𝑥 } ) = { 〈 𝑥 , ( ( 𝐹 ↾ { 𝑥 } ) ‘ 𝑥 ) 〉 } → ( ( ( ( 𝐹 ↾ { 𝑥 } ) ‘ 𝑥 ) ∈ 𝐶 ∧ ( 𝐹 ↾ { 𝑥 } ) = { 〈 𝑥 , ( ( 𝐹 ↾ { 𝑥 } ) ‘ 𝑥 ) 〉 } ) ↔ ( 𝐹 ‘ 𝑥 ) ∈ 𝐶 ) ) |
| 23 |
19 22
|
bitrid |
⊢ ( ( 𝐹 ↾ { 𝑥 } ) = { 〈 𝑥 , ( ( 𝐹 ↾ { 𝑥 } ) ‘ 𝑥 ) 〉 } → ( ( 𝐹 ↾ { 𝑥 } ) : { 𝑥 } ⟶ 𝐶 ↔ ( 𝐹 ‘ 𝑥 ) ∈ 𝐶 ) ) |
| 24 |
17 23
|
sylbir |
⊢ ( ( 𝐹 ↾ { 𝑥 } ) = { 〈 𝑥 , ( 𝐹 ‘ 𝑥 ) 〉 } → ( ( 𝐹 ↾ { 𝑥 } ) : { 𝑥 } ⟶ 𝐶 ↔ ( 𝐹 ‘ 𝑥 ) ∈ 𝐶 ) ) |
| 25 |
11 24
|
syl |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐹 ↾ { 𝑥 } ) : { 𝑥 } ⟶ 𝐶 ↔ ( 𝐹 ‘ 𝑥 ) ∈ 𝐶 ) ) |
| 26 |
25
|
expcom |
⊢ ( 𝑥 ∈ 𝐴 → ( 𝐹 Fn 𝐴 → ( ( 𝐹 ↾ { 𝑥 } ) : { 𝑥 } ⟶ 𝐶 ↔ ( 𝐹 ‘ 𝑥 ) ∈ 𝐶 ) ) ) |
| 27 |
10 26
|
vtoclga |
⊢ ( 𝐵 ∈ 𝐴 → ( 𝐹 Fn 𝐴 → ( ( 𝐹 ↾ { 𝐵 } ) : { 𝐵 } ⟶ 𝐶 ↔ ( 𝐹 ‘ 𝐵 ) ∈ 𝐶 ) ) ) |
| 28 |
27
|
impcom |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴 ) → ( ( 𝐹 ↾ { 𝐵 } ) : { 𝐵 } ⟶ 𝐶 ↔ ( 𝐹 ‘ 𝐵 ) ∈ 𝐶 ) ) |