Step |
Hyp |
Ref |
Expression |
1 |
|
sneq |
⊢ ( 𝑥 = 𝐵 → { 𝑥 } = { 𝐵 } ) |
2 |
|
reseq2 |
⊢ ( { 𝑥 } = { 𝐵 } → ( 𝐹 ↾ { 𝑥 } ) = ( 𝐹 ↾ { 𝐵 } ) ) |
3 |
2
|
feq1d |
⊢ ( { 𝑥 } = { 𝐵 } → ( ( 𝐹 ↾ { 𝑥 } ) : { 𝑥 } ⟶ 𝐶 ↔ ( 𝐹 ↾ { 𝐵 } ) : { 𝑥 } ⟶ 𝐶 ) ) |
4 |
|
feq2 |
⊢ ( { 𝑥 } = { 𝐵 } → ( ( 𝐹 ↾ { 𝐵 } ) : { 𝑥 } ⟶ 𝐶 ↔ ( 𝐹 ↾ { 𝐵 } ) : { 𝐵 } ⟶ 𝐶 ) ) |
5 |
3 4
|
bitrd |
⊢ ( { 𝑥 } = { 𝐵 } → ( ( 𝐹 ↾ { 𝑥 } ) : { 𝑥 } ⟶ 𝐶 ↔ ( 𝐹 ↾ { 𝐵 } ) : { 𝐵 } ⟶ 𝐶 ) ) |
6 |
1 5
|
syl |
⊢ ( 𝑥 = 𝐵 → ( ( 𝐹 ↾ { 𝑥 } ) : { 𝑥 } ⟶ 𝐶 ↔ ( 𝐹 ↾ { 𝐵 } ) : { 𝐵 } ⟶ 𝐶 ) ) |
7 |
|
fveq2 |
⊢ ( 𝑥 = 𝐵 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝐵 ) ) |
8 |
7
|
eleq1d |
⊢ ( 𝑥 = 𝐵 → ( ( 𝐹 ‘ 𝑥 ) ∈ 𝐶 ↔ ( 𝐹 ‘ 𝐵 ) ∈ 𝐶 ) ) |
9 |
6 8
|
bibi12d |
⊢ ( 𝑥 = 𝐵 → ( ( ( 𝐹 ↾ { 𝑥 } ) : { 𝑥 } ⟶ 𝐶 ↔ ( 𝐹 ‘ 𝑥 ) ∈ 𝐶 ) ↔ ( ( 𝐹 ↾ { 𝐵 } ) : { 𝐵 } ⟶ 𝐶 ↔ ( 𝐹 ‘ 𝐵 ) ∈ 𝐶 ) ) ) |
10 |
9
|
imbi2d |
⊢ ( 𝑥 = 𝐵 → ( ( 𝐹 Fn 𝐴 → ( ( 𝐹 ↾ { 𝑥 } ) : { 𝑥 } ⟶ 𝐶 ↔ ( 𝐹 ‘ 𝑥 ) ∈ 𝐶 ) ) ↔ ( 𝐹 Fn 𝐴 → ( ( 𝐹 ↾ { 𝐵 } ) : { 𝐵 } ⟶ 𝐶 ↔ ( 𝐹 ‘ 𝐵 ) ∈ 𝐶 ) ) ) ) |
11 |
|
fnressn |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ↾ { 𝑥 } ) = { 〈 𝑥 , ( 𝐹 ‘ 𝑥 ) 〉 } ) |
12 |
|
vsnid |
⊢ 𝑥 ∈ { 𝑥 } |
13 |
|
fvres |
⊢ ( 𝑥 ∈ { 𝑥 } → ( ( 𝐹 ↾ { 𝑥 } ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
14 |
12 13
|
ax-mp |
⊢ ( ( 𝐹 ↾ { 𝑥 } ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) |
15 |
14
|
opeq2i |
⊢ 〈 𝑥 , ( ( 𝐹 ↾ { 𝑥 } ) ‘ 𝑥 ) 〉 = 〈 𝑥 , ( 𝐹 ‘ 𝑥 ) 〉 |
16 |
15
|
sneqi |
⊢ { 〈 𝑥 , ( ( 𝐹 ↾ { 𝑥 } ) ‘ 𝑥 ) 〉 } = { 〈 𝑥 , ( 𝐹 ‘ 𝑥 ) 〉 } |
17 |
16
|
eqeq2i |
⊢ ( ( 𝐹 ↾ { 𝑥 } ) = { 〈 𝑥 , ( ( 𝐹 ↾ { 𝑥 } ) ‘ 𝑥 ) 〉 } ↔ ( 𝐹 ↾ { 𝑥 } ) = { 〈 𝑥 , ( 𝐹 ‘ 𝑥 ) 〉 } ) |
18 |
|
vex |
⊢ 𝑥 ∈ V |
19 |
18
|
fsn2 |
⊢ ( ( 𝐹 ↾ { 𝑥 } ) : { 𝑥 } ⟶ 𝐶 ↔ ( ( ( 𝐹 ↾ { 𝑥 } ) ‘ 𝑥 ) ∈ 𝐶 ∧ ( 𝐹 ↾ { 𝑥 } ) = { 〈 𝑥 , ( ( 𝐹 ↾ { 𝑥 } ) ‘ 𝑥 ) 〉 } ) ) |
20 |
|
iba |
⊢ ( ( 𝐹 ↾ { 𝑥 } ) = { 〈 𝑥 , ( ( 𝐹 ↾ { 𝑥 } ) ‘ 𝑥 ) 〉 } → ( ( ( 𝐹 ↾ { 𝑥 } ) ‘ 𝑥 ) ∈ 𝐶 ↔ ( ( ( 𝐹 ↾ { 𝑥 } ) ‘ 𝑥 ) ∈ 𝐶 ∧ ( 𝐹 ↾ { 𝑥 } ) = { 〈 𝑥 , ( ( 𝐹 ↾ { 𝑥 } ) ‘ 𝑥 ) 〉 } ) ) ) |
21 |
14
|
eleq1i |
⊢ ( ( ( 𝐹 ↾ { 𝑥 } ) ‘ 𝑥 ) ∈ 𝐶 ↔ ( 𝐹 ‘ 𝑥 ) ∈ 𝐶 ) |
22 |
20 21
|
bitr3di |
⊢ ( ( 𝐹 ↾ { 𝑥 } ) = { 〈 𝑥 , ( ( 𝐹 ↾ { 𝑥 } ) ‘ 𝑥 ) 〉 } → ( ( ( ( 𝐹 ↾ { 𝑥 } ) ‘ 𝑥 ) ∈ 𝐶 ∧ ( 𝐹 ↾ { 𝑥 } ) = { 〈 𝑥 , ( ( 𝐹 ↾ { 𝑥 } ) ‘ 𝑥 ) 〉 } ) ↔ ( 𝐹 ‘ 𝑥 ) ∈ 𝐶 ) ) |
23 |
19 22
|
bitrid |
⊢ ( ( 𝐹 ↾ { 𝑥 } ) = { 〈 𝑥 , ( ( 𝐹 ↾ { 𝑥 } ) ‘ 𝑥 ) 〉 } → ( ( 𝐹 ↾ { 𝑥 } ) : { 𝑥 } ⟶ 𝐶 ↔ ( 𝐹 ‘ 𝑥 ) ∈ 𝐶 ) ) |
24 |
17 23
|
sylbir |
⊢ ( ( 𝐹 ↾ { 𝑥 } ) = { 〈 𝑥 , ( 𝐹 ‘ 𝑥 ) 〉 } → ( ( 𝐹 ↾ { 𝑥 } ) : { 𝑥 } ⟶ 𝐶 ↔ ( 𝐹 ‘ 𝑥 ) ∈ 𝐶 ) ) |
25 |
11 24
|
syl |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐹 ↾ { 𝑥 } ) : { 𝑥 } ⟶ 𝐶 ↔ ( 𝐹 ‘ 𝑥 ) ∈ 𝐶 ) ) |
26 |
25
|
expcom |
⊢ ( 𝑥 ∈ 𝐴 → ( 𝐹 Fn 𝐴 → ( ( 𝐹 ↾ { 𝑥 } ) : { 𝑥 } ⟶ 𝐶 ↔ ( 𝐹 ‘ 𝑥 ) ∈ 𝐶 ) ) ) |
27 |
10 26
|
vtoclga |
⊢ ( 𝐵 ∈ 𝐴 → ( 𝐹 Fn 𝐴 → ( ( 𝐹 ↾ { 𝐵 } ) : { 𝐵 } ⟶ 𝐶 ↔ ( 𝐹 ‘ 𝐵 ) ∈ 𝐶 ) ) ) |
28 |
27
|
impcom |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴 ) → ( ( 𝐹 ↾ { 𝐵 } ) : { 𝐵 } ⟶ 𝐶 ↔ ( 𝐹 ‘ 𝐵 ) ∈ 𝐶 ) ) |