Metamath Proof Explorer
Description: A function taking real values, is a function taking extended real
values. (Contributed by Glauco Siliprandi, 26-Jun-2021)
|
|
Ref |
Expression |
|
Hypothesis |
frexr.1 |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℝ ) |
|
Assertion |
frexr |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℝ* ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
frexr.1 |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℝ ) |
2 |
|
ressxr |
⊢ ℝ ⊆ ℝ* |
3 |
2
|
a1i |
⊢ ( 𝜑 → ℝ ⊆ ℝ* ) |
4 |
1 3
|
fssd |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℝ* ) |