| Step | Hyp | Ref | Expression | 
						
							| 1 |  | poeq2 | ⊢ ( 𝑥  =  ∅  →  ( 𝑅  Po  𝑥  ↔  𝑅  Po  ∅ ) ) | 
						
							| 2 |  | freq2 | ⊢ ( 𝑥  =  ∅  →  ( 𝑅  Fr  𝑥  ↔  𝑅  Fr  ∅ ) ) | 
						
							| 3 | 1 2 | imbi12d | ⊢ ( 𝑥  =  ∅  →  ( ( 𝑅  Po  𝑥  →  𝑅  Fr  𝑥 )  ↔  ( 𝑅  Po  ∅  →  𝑅  Fr  ∅ ) ) ) | 
						
							| 4 |  | poeq2 | ⊢ ( 𝑥  =  𝑦  →  ( 𝑅  Po  𝑥  ↔  𝑅  Po  𝑦 ) ) | 
						
							| 5 |  | freq2 | ⊢ ( 𝑥  =  𝑦  →  ( 𝑅  Fr  𝑥  ↔  𝑅  Fr  𝑦 ) ) | 
						
							| 6 | 4 5 | imbi12d | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝑅  Po  𝑥  →  𝑅  Fr  𝑥 )  ↔  ( 𝑅  Po  𝑦  →  𝑅  Fr  𝑦 ) ) ) | 
						
							| 7 |  | poeq2 | ⊢ ( 𝑥  =  ( 𝑦  ∪  { 𝑤 } )  →  ( 𝑅  Po  𝑥  ↔  𝑅  Po  ( 𝑦  ∪  { 𝑤 } ) ) ) | 
						
							| 8 |  | freq2 | ⊢ ( 𝑥  =  ( 𝑦  ∪  { 𝑤 } )  →  ( 𝑅  Fr  𝑥  ↔  𝑅  Fr  ( 𝑦  ∪  { 𝑤 } ) ) ) | 
						
							| 9 | 7 8 | imbi12d | ⊢ ( 𝑥  =  ( 𝑦  ∪  { 𝑤 } )  →  ( ( 𝑅  Po  𝑥  →  𝑅  Fr  𝑥 )  ↔  ( 𝑅  Po  ( 𝑦  ∪  { 𝑤 } )  →  𝑅  Fr  ( 𝑦  ∪  { 𝑤 } ) ) ) ) | 
						
							| 10 |  | poeq2 | ⊢ ( 𝑥  =  𝐴  →  ( 𝑅  Po  𝑥  ↔  𝑅  Po  𝐴 ) ) | 
						
							| 11 |  | freq2 | ⊢ ( 𝑥  =  𝐴  →  ( 𝑅  Fr  𝑥  ↔  𝑅  Fr  𝐴 ) ) | 
						
							| 12 | 10 11 | imbi12d | ⊢ ( 𝑥  =  𝐴  →  ( ( 𝑅  Po  𝑥  →  𝑅  Fr  𝑥 )  ↔  ( 𝑅  Po  𝐴  →  𝑅  Fr  𝐴 ) ) ) | 
						
							| 13 |  | fr0 | ⊢ 𝑅  Fr  ∅ | 
						
							| 14 | 13 | a1i | ⊢ ( 𝑅  Po  ∅  →  𝑅  Fr  ∅ ) | 
						
							| 15 |  | ssun1 | ⊢ 𝑦  ⊆  ( 𝑦  ∪  { 𝑤 } ) | 
						
							| 16 |  | poss | ⊢ ( 𝑦  ⊆  ( 𝑦  ∪  { 𝑤 } )  →  ( 𝑅  Po  ( 𝑦  ∪  { 𝑤 } )  →  𝑅  Po  𝑦 ) ) | 
						
							| 17 | 15 16 | ax-mp | ⊢ ( 𝑅  Po  ( 𝑦  ∪  { 𝑤 } )  →  𝑅  Po  𝑦 ) | 
						
							| 18 | 17 | imim1i | ⊢ ( ( 𝑅  Po  𝑦  →  𝑅  Fr  𝑦 )  →  ( 𝑅  Po  ( 𝑦  ∪  { 𝑤 } )  →  𝑅  Fr  𝑦 ) ) | 
						
							| 19 |  | uncom | ⊢ ( 𝑦  ∪  { 𝑤 } )  =  ( { 𝑤 }  ∪  𝑦 ) | 
						
							| 20 | 19 | sseq2i | ⊢ ( 𝑥  ⊆  ( 𝑦  ∪  { 𝑤 } )  ↔  𝑥  ⊆  ( { 𝑤 }  ∪  𝑦 ) ) | 
						
							| 21 |  | ssundif | ⊢ ( 𝑥  ⊆  ( { 𝑤 }  ∪  𝑦 )  ↔  ( 𝑥  ∖  { 𝑤 } )  ⊆  𝑦 ) | 
						
							| 22 | 20 21 | bitri | ⊢ ( 𝑥  ⊆  ( 𝑦  ∪  { 𝑤 } )  ↔  ( 𝑥  ∖  { 𝑤 } )  ⊆  𝑦 ) | 
						
							| 23 | 22 | anbi1i | ⊢ ( ( 𝑥  ⊆  ( 𝑦  ∪  { 𝑤 } )  ∧  𝑥  ≠  ∅ )  ↔  ( ( 𝑥  ∖  { 𝑤 } )  ⊆  𝑦  ∧  𝑥  ≠  ∅ ) ) | 
						
							| 24 |  | breq1 | ⊢ ( 𝑣  =  𝑧  →  ( 𝑣 𝑅 𝑤  ↔  𝑧 𝑅 𝑤 ) ) | 
						
							| 25 | 24 | cbvrexvw | ⊢ ( ∃ 𝑣  ∈  𝑥 𝑣 𝑅 𝑤  ↔  ∃ 𝑧  ∈  𝑥 𝑧 𝑅 𝑤 ) | 
						
							| 26 |  | simpllr | ⊢ ( ( ( ( 𝑅  Po  ( 𝑦  ∪  { 𝑤 } )  ∧  𝑅  Fr  𝑦 )  ∧  ( ( 𝑥  ∖  { 𝑤 } )  ⊆  𝑦  ∧  𝑥  ≠  ∅ ) )  ∧  ( 𝑧  ∈  𝑥  ∧  𝑧 𝑅 𝑤  ∧  𝑤  ∈  𝑥 ) )  →  𝑅  Fr  𝑦 ) | 
						
							| 27 |  | simplrl | ⊢ ( ( ( ( 𝑅  Po  ( 𝑦  ∪  { 𝑤 } )  ∧  𝑅  Fr  𝑦 )  ∧  ( ( 𝑥  ∖  { 𝑤 } )  ⊆  𝑦  ∧  𝑥  ≠  ∅ ) )  ∧  ( 𝑧  ∈  𝑥  ∧  𝑧 𝑅 𝑤  ∧  𝑤  ∈  𝑥 ) )  →  ( 𝑥  ∖  { 𝑤 } )  ⊆  𝑦 ) | 
						
							| 28 |  | poss | ⊢ ( 𝑥  ⊆  ( 𝑦  ∪  { 𝑤 } )  →  ( 𝑅  Po  ( 𝑦  ∪  { 𝑤 } )  →  𝑅  Po  𝑥 ) ) | 
						
							| 29 | 28 | impcom | ⊢ ( ( 𝑅  Po  ( 𝑦  ∪  { 𝑤 } )  ∧  𝑥  ⊆  ( 𝑦  ∪  { 𝑤 } ) )  →  𝑅  Po  𝑥 ) | 
						
							| 30 | 22 29 | sylan2br | ⊢ ( ( 𝑅  Po  ( 𝑦  ∪  { 𝑤 } )  ∧  ( 𝑥  ∖  { 𝑤 } )  ⊆  𝑦 )  →  𝑅  Po  𝑥 ) | 
						
							| 31 | 30 | ad2ant2r | ⊢ ( ( ( 𝑅  Po  ( 𝑦  ∪  { 𝑤 } )  ∧  𝑅  Fr  𝑦 )  ∧  ( ( 𝑥  ∖  { 𝑤 } )  ⊆  𝑦  ∧  𝑥  ≠  ∅ ) )  →  𝑅  Po  𝑥 ) | 
						
							| 32 |  | simpr1 | ⊢ ( ( 𝑅  Po  𝑥  ∧  ( 𝑧  ∈  𝑥  ∧  𝑧 𝑅 𝑤  ∧  𝑤  ∈  𝑥 ) )  →  𝑧  ∈  𝑥 ) | 
						
							| 33 |  | simpr2 | ⊢ ( ( 𝑅  Po  𝑥  ∧  ( 𝑧  ∈  𝑥  ∧  𝑧 𝑅 𝑤  ∧  𝑤  ∈  𝑥 ) )  →  𝑧 𝑅 𝑤 ) | 
						
							| 34 |  | poirr | ⊢ ( ( 𝑅  Po  𝑥  ∧  𝑤  ∈  𝑥 )  →  ¬  𝑤 𝑅 𝑤 ) | 
						
							| 35 | 34 | 3ad2antr3 | ⊢ ( ( 𝑅  Po  𝑥  ∧  ( 𝑧  ∈  𝑥  ∧  𝑧 𝑅 𝑤  ∧  𝑤  ∈  𝑥 ) )  →  ¬  𝑤 𝑅 𝑤 ) | 
						
							| 36 |  | nbrne2 | ⊢ ( ( 𝑧 𝑅 𝑤  ∧  ¬  𝑤 𝑅 𝑤 )  →  𝑧  ≠  𝑤 ) | 
						
							| 37 | 33 35 36 | syl2anc | ⊢ ( ( 𝑅  Po  𝑥  ∧  ( 𝑧  ∈  𝑥  ∧  𝑧 𝑅 𝑤  ∧  𝑤  ∈  𝑥 ) )  →  𝑧  ≠  𝑤 ) | 
						
							| 38 |  | eldifsn | ⊢ ( 𝑧  ∈  ( 𝑥  ∖  { 𝑤 } )  ↔  ( 𝑧  ∈  𝑥  ∧  𝑧  ≠  𝑤 ) ) | 
						
							| 39 | 32 37 38 | sylanbrc | ⊢ ( ( 𝑅  Po  𝑥  ∧  ( 𝑧  ∈  𝑥  ∧  𝑧 𝑅 𝑤  ∧  𝑤  ∈  𝑥 ) )  →  𝑧  ∈  ( 𝑥  ∖  { 𝑤 } ) ) | 
						
							| 40 | 31 39 | sylan | ⊢ ( ( ( ( 𝑅  Po  ( 𝑦  ∪  { 𝑤 } )  ∧  𝑅  Fr  𝑦 )  ∧  ( ( 𝑥  ∖  { 𝑤 } )  ⊆  𝑦  ∧  𝑥  ≠  ∅ ) )  ∧  ( 𝑧  ∈  𝑥  ∧  𝑧 𝑅 𝑤  ∧  𝑤  ∈  𝑥 ) )  →  𝑧  ∈  ( 𝑥  ∖  { 𝑤 } ) ) | 
						
							| 41 | 40 | ne0d | ⊢ ( ( ( ( 𝑅  Po  ( 𝑦  ∪  { 𝑤 } )  ∧  𝑅  Fr  𝑦 )  ∧  ( ( 𝑥  ∖  { 𝑤 } )  ⊆  𝑦  ∧  𝑥  ≠  ∅ ) )  ∧  ( 𝑧  ∈  𝑥  ∧  𝑧 𝑅 𝑤  ∧  𝑤  ∈  𝑥 ) )  →  ( 𝑥  ∖  { 𝑤 } )  ≠  ∅ ) | 
						
							| 42 |  | difss | ⊢ ( 𝑥  ∖  { 𝑤 } )  ⊆  𝑥 | 
						
							| 43 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 44 | 43 | difexi | ⊢ ( 𝑥  ∖  { 𝑤 } )  ∈  V | 
						
							| 45 |  | fri | ⊢ ( ( ( ( 𝑥  ∖  { 𝑤 } )  ∈  V  ∧  𝑅  Fr  𝑦 )  ∧  ( ( 𝑥  ∖  { 𝑤 } )  ⊆  𝑦  ∧  ( 𝑥  ∖  { 𝑤 } )  ≠  ∅ ) )  →  ∃ 𝑢  ∈  ( 𝑥  ∖  { 𝑤 } ) ∀ 𝑣  ∈  ( 𝑥  ∖  { 𝑤 } ) ¬  𝑣 𝑅 𝑢 ) | 
						
							| 46 | 44 45 | mpanl1 | ⊢ ( ( 𝑅  Fr  𝑦  ∧  ( ( 𝑥  ∖  { 𝑤 } )  ⊆  𝑦  ∧  ( 𝑥  ∖  { 𝑤 } )  ≠  ∅ ) )  →  ∃ 𝑢  ∈  ( 𝑥  ∖  { 𝑤 } ) ∀ 𝑣  ∈  ( 𝑥  ∖  { 𝑤 } ) ¬  𝑣 𝑅 𝑢 ) | 
						
							| 47 |  | ssrexv | ⊢ ( ( 𝑥  ∖  { 𝑤 } )  ⊆  𝑥  →  ( ∃ 𝑢  ∈  ( 𝑥  ∖  { 𝑤 } ) ∀ 𝑣  ∈  ( 𝑥  ∖  { 𝑤 } ) ¬  𝑣 𝑅 𝑢  →  ∃ 𝑢  ∈  𝑥 ∀ 𝑣  ∈  ( 𝑥  ∖  { 𝑤 } ) ¬  𝑣 𝑅 𝑢 ) ) | 
						
							| 48 | 42 46 47 | mpsyl | ⊢ ( ( 𝑅  Fr  𝑦  ∧  ( ( 𝑥  ∖  { 𝑤 } )  ⊆  𝑦  ∧  ( 𝑥  ∖  { 𝑤 } )  ≠  ∅ ) )  →  ∃ 𝑢  ∈  𝑥 ∀ 𝑣  ∈  ( 𝑥  ∖  { 𝑤 } ) ¬  𝑣 𝑅 𝑢 ) | 
						
							| 49 | 26 27 41 48 | syl12anc | ⊢ ( ( ( ( 𝑅  Po  ( 𝑦  ∪  { 𝑤 } )  ∧  𝑅  Fr  𝑦 )  ∧  ( ( 𝑥  ∖  { 𝑤 } )  ⊆  𝑦  ∧  𝑥  ≠  ∅ ) )  ∧  ( 𝑧  ∈  𝑥  ∧  𝑧 𝑅 𝑤  ∧  𝑤  ∈  𝑥 ) )  →  ∃ 𝑢  ∈  𝑥 ∀ 𝑣  ∈  ( 𝑥  ∖  { 𝑤 } ) ¬  𝑣 𝑅 𝑢 ) | 
						
							| 50 |  | breq1 | ⊢ ( 𝑣  =  𝑧  →  ( 𝑣 𝑅 𝑢  ↔  𝑧 𝑅 𝑢 ) ) | 
						
							| 51 | 50 | notbid | ⊢ ( 𝑣  =  𝑧  →  ( ¬  𝑣 𝑅 𝑢  ↔  ¬  𝑧 𝑅 𝑢 ) ) | 
						
							| 52 | 51 | rspcv | ⊢ ( 𝑧  ∈  ( 𝑥  ∖  { 𝑤 } )  →  ( ∀ 𝑣  ∈  ( 𝑥  ∖  { 𝑤 } ) ¬  𝑣 𝑅 𝑢  →  ¬  𝑧 𝑅 𝑢 ) ) | 
						
							| 53 | 39 52 | syl | ⊢ ( ( 𝑅  Po  𝑥  ∧  ( 𝑧  ∈  𝑥  ∧  𝑧 𝑅 𝑤  ∧  𝑤  ∈  𝑥 ) )  →  ( ∀ 𝑣  ∈  ( 𝑥  ∖  { 𝑤 } ) ¬  𝑣 𝑅 𝑢  →  ¬  𝑧 𝑅 𝑢 ) ) | 
						
							| 54 | 53 | adantr | ⊢ ( ( ( 𝑅  Po  𝑥  ∧  ( 𝑧  ∈  𝑥  ∧  𝑧 𝑅 𝑤  ∧  𝑤  ∈  𝑥 ) )  ∧  𝑢  ∈  𝑥 )  →  ( ∀ 𝑣  ∈  ( 𝑥  ∖  { 𝑤 } ) ¬  𝑣 𝑅 𝑢  →  ¬  𝑧 𝑅 𝑢 ) ) | 
						
							| 55 |  | simplr2 | ⊢ ( ( ( 𝑅  Po  𝑥  ∧  ( 𝑧  ∈  𝑥  ∧  𝑧 𝑅 𝑤  ∧  𝑤  ∈  𝑥 ) )  ∧  𝑢  ∈  𝑥 )  →  𝑧 𝑅 𝑤 ) | 
						
							| 56 |  | simpll | ⊢ ( ( ( 𝑅  Po  𝑥  ∧  ( 𝑧  ∈  𝑥  ∧  𝑧 𝑅 𝑤  ∧  𝑤  ∈  𝑥 ) )  ∧  𝑢  ∈  𝑥 )  →  𝑅  Po  𝑥 ) | 
						
							| 57 |  | simplr1 | ⊢ ( ( ( 𝑅  Po  𝑥  ∧  ( 𝑧  ∈  𝑥  ∧  𝑧 𝑅 𝑤  ∧  𝑤  ∈  𝑥 ) )  ∧  𝑢  ∈  𝑥 )  →  𝑧  ∈  𝑥 ) | 
						
							| 58 |  | simplr3 | ⊢ ( ( ( 𝑅  Po  𝑥  ∧  ( 𝑧  ∈  𝑥  ∧  𝑧 𝑅 𝑤  ∧  𝑤  ∈  𝑥 ) )  ∧  𝑢  ∈  𝑥 )  →  𝑤  ∈  𝑥 ) | 
						
							| 59 |  | simpr | ⊢ ( ( ( 𝑅  Po  𝑥  ∧  ( 𝑧  ∈  𝑥  ∧  𝑧 𝑅 𝑤  ∧  𝑤  ∈  𝑥 ) )  ∧  𝑢  ∈  𝑥 )  →  𝑢  ∈  𝑥 ) | 
						
							| 60 |  | potr | ⊢ ( ( 𝑅  Po  𝑥  ∧  ( 𝑧  ∈  𝑥  ∧  𝑤  ∈  𝑥  ∧  𝑢  ∈  𝑥 ) )  →  ( ( 𝑧 𝑅 𝑤  ∧  𝑤 𝑅 𝑢 )  →  𝑧 𝑅 𝑢 ) ) | 
						
							| 61 | 56 57 58 59 60 | syl13anc | ⊢ ( ( ( 𝑅  Po  𝑥  ∧  ( 𝑧  ∈  𝑥  ∧  𝑧 𝑅 𝑤  ∧  𝑤  ∈  𝑥 ) )  ∧  𝑢  ∈  𝑥 )  →  ( ( 𝑧 𝑅 𝑤  ∧  𝑤 𝑅 𝑢 )  →  𝑧 𝑅 𝑢 ) ) | 
						
							| 62 | 55 61 | mpand | ⊢ ( ( ( 𝑅  Po  𝑥  ∧  ( 𝑧  ∈  𝑥  ∧  𝑧 𝑅 𝑤  ∧  𝑤  ∈  𝑥 ) )  ∧  𝑢  ∈  𝑥 )  →  ( 𝑤 𝑅 𝑢  →  𝑧 𝑅 𝑢 ) ) | 
						
							| 63 | 62 | con3d | ⊢ ( ( ( 𝑅  Po  𝑥  ∧  ( 𝑧  ∈  𝑥  ∧  𝑧 𝑅 𝑤  ∧  𝑤  ∈  𝑥 ) )  ∧  𝑢  ∈  𝑥 )  →  ( ¬  𝑧 𝑅 𝑢  →  ¬  𝑤 𝑅 𝑢 ) ) | 
						
							| 64 |  | vex | ⊢ 𝑤  ∈  V | 
						
							| 65 |  | breq1 | ⊢ ( 𝑣  =  𝑤  →  ( 𝑣 𝑅 𝑢  ↔  𝑤 𝑅 𝑢 ) ) | 
						
							| 66 | 65 | notbid | ⊢ ( 𝑣  =  𝑤  →  ( ¬  𝑣 𝑅 𝑢  ↔  ¬  𝑤 𝑅 𝑢 ) ) | 
						
							| 67 | 64 66 | ralsn | ⊢ ( ∀ 𝑣  ∈  { 𝑤 } ¬  𝑣 𝑅 𝑢  ↔  ¬  𝑤 𝑅 𝑢 ) | 
						
							| 68 | 63 67 | imbitrrdi | ⊢ ( ( ( 𝑅  Po  𝑥  ∧  ( 𝑧  ∈  𝑥  ∧  𝑧 𝑅 𝑤  ∧  𝑤  ∈  𝑥 ) )  ∧  𝑢  ∈  𝑥 )  →  ( ¬  𝑧 𝑅 𝑢  →  ∀ 𝑣  ∈  { 𝑤 } ¬  𝑣 𝑅 𝑢 ) ) | 
						
							| 69 | 54 68 | syld | ⊢ ( ( ( 𝑅  Po  𝑥  ∧  ( 𝑧  ∈  𝑥  ∧  𝑧 𝑅 𝑤  ∧  𝑤  ∈  𝑥 ) )  ∧  𝑢  ∈  𝑥 )  →  ( ∀ 𝑣  ∈  ( 𝑥  ∖  { 𝑤 } ) ¬  𝑣 𝑅 𝑢  →  ∀ 𝑣  ∈  { 𝑤 } ¬  𝑣 𝑅 𝑢 ) ) | 
						
							| 70 |  | ralun | ⊢ ( ( ∀ 𝑣  ∈  ( 𝑥  ∖  { 𝑤 } ) ¬  𝑣 𝑅 𝑢  ∧  ∀ 𝑣  ∈  { 𝑤 } ¬  𝑣 𝑅 𝑢 )  →  ∀ 𝑣  ∈  ( ( 𝑥  ∖  { 𝑤 } )  ∪  { 𝑤 } ) ¬  𝑣 𝑅 𝑢 ) | 
						
							| 71 | 70 | ex | ⊢ ( ∀ 𝑣  ∈  ( 𝑥  ∖  { 𝑤 } ) ¬  𝑣 𝑅 𝑢  →  ( ∀ 𝑣  ∈  { 𝑤 } ¬  𝑣 𝑅 𝑢  →  ∀ 𝑣  ∈  ( ( 𝑥  ∖  { 𝑤 } )  ∪  { 𝑤 } ) ¬  𝑣 𝑅 𝑢 ) ) | 
						
							| 72 | 69 71 | sylcom | ⊢ ( ( ( 𝑅  Po  𝑥  ∧  ( 𝑧  ∈  𝑥  ∧  𝑧 𝑅 𝑤  ∧  𝑤  ∈  𝑥 ) )  ∧  𝑢  ∈  𝑥 )  →  ( ∀ 𝑣  ∈  ( 𝑥  ∖  { 𝑤 } ) ¬  𝑣 𝑅 𝑢  →  ∀ 𝑣  ∈  ( ( 𝑥  ∖  { 𝑤 } )  ∪  { 𝑤 } ) ¬  𝑣 𝑅 𝑢 ) ) | 
						
							| 73 |  | difsnid | ⊢ ( 𝑤  ∈  𝑥  →  ( ( 𝑥  ∖  { 𝑤 } )  ∪  { 𝑤 } )  =  𝑥 ) | 
						
							| 74 | 73 | raleqdv | ⊢ ( 𝑤  ∈  𝑥  →  ( ∀ 𝑣  ∈  ( ( 𝑥  ∖  { 𝑤 } )  ∪  { 𝑤 } ) ¬  𝑣 𝑅 𝑢  ↔  ∀ 𝑣  ∈  𝑥 ¬  𝑣 𝑅 𝑢 ) ) | 
						
							| 75 | 58 74 | syl | ⊢ ( ( ( 𝑅  Po  𝑥  ∧  ( 𝑧  ∈  𝑥  ∧  𝑧 𝑅 𝑤  ∧  𝑤  ∈  𝑥 ) )  ∧  𝑢  ∈  𝑥 )  →  ( ∀ 𝑣  ∈  ( ( 𝑥  ∖  { 𝑤 } )  ∪  { 𝑤 } ) ¬  𝑣 𝑅 𝑢  ↔  ∀ 𝑣  ∈  𝑥 ¬  𝑣 𝑅 𝑢 ) ) | 
						
							| 76 | 72 75 | sylibd | ⊢ ( ( ( 𝑅  Po  𝑥  ∧  ( 𝑧  ∈  𝑥  ∧  𝑧 𝑅 𝑤  ∧  𝑤  ∈  𝑥 ) )  ∧  𝑢  ∈  𝑥 )  →  ( ∀ 𝑣  ∈  ( 𝑥  ∖  { 𝑤 } ) ¬  𝑣 𝑅 𝑢  →  ∀ 𝑣  ∈  𝑥 ¬  𝑣 𝑅 𝑢 ) ) | 
						
							| 77 | 76 | reximdva | ⊢ ( ( 𝑅  Po  𝑥  ∧  ( 𝑧  ∈  𝑥  ∧  𝑧 𝑅 𝑤  ∧  𝑤  ∈  𝑥 ) )  →  ( ∃ 𝑢  ∈  𝑥 ∀ 𝑣  ∈  ( 𝑥  ∖  { 𝑤 } ) ¬  𝑣 𝑅 𝑢  →  ∃ 𝑢  ∈  𝑥 ∀ 𝑣  ∈  𝑥 ¬  𝑣 𝑅 𝑢 ) ) | 
						
							| 78 | 31 77 | sylan | ⊢ ( ( ( ( 𝑅  Po  ( 𝑦  ∪  { 𝑤 } )  ∧  𝑅  Fr  𝑦 )  ∧  ( ( 𝑥  ∖  { 𝑤 } )  ⊆  𝑦  ∧  𝑥  ≠  ∅ ) )  ∧  ( 𝑧  ∈  𝑥  ∧  𝑧 𝑅 𝑤  ∧  𝑤  ∈  𝑥 ) )  →  ( ∃ 𝑢  ∈  𝑥 ∀ 𝑣  ∈  ( 𝑥  ∖  { 𝑤 } ) ¬  𝑣 𝑅 𝑢  →  ∃ 𝑢  ∈  𝑥 ∀ 𝑣  ∈  𝑥 ¬  𝑣 𝑅 𝑢 ) ) | 
						
							| 79 | 49 78 | mpd | ⊢ ( ( ( ( 𝑅  Po  ( 𝑦  ∪  { 𝑤 } )  ∧  𝑅  Fr  𝑦 )  ∧  ( ( 𝑥  ∖  { 𝑤 } )  ⊆  𝑦  ∧  𝑥  ≠  ∅ ) )  ∧  ( 𝑧  ∈  𝑥  ∧  𝑧 𝑅 𝑤  ∧  𝑤  ∈  𝑥 ) )  →  ∃ 𝑢  ∈  𝑥 ∀ 𝑣  ∈  𝑥 ¬  𝑣 𝑅 𝑢 ) | 
						
							| 80 | 79 | 3exp2 | ⊢ ( ( ( 𝑅  Po  ( 𝑦  ∪  { 𝑤 } )  ∧  𝑅  Fr  𝑦 )  ∧  ( ( 𝑥  ∖  { 𝑤 } )  ⊆  𝑦  ∧  𝑥  ≠  ∅ ) )  →  ( 𝑧  ∈  𝑥  →  ( 𝑧 𝑅 𝑤  →  ( 𝑤  ∈  𝑥  →  ∃ 𝑢  ∈  𝑥 ∀ 𝑣  ∈  𝑥 ¬  𝑣 𝑅 𝑢 ) ) ) ) | 
						
							| 81 | 80 | rexlimdv | ⊢ ( ( ( 𝑅  Po  ( 𝑦  ∪  { 𝑤 } )  ∧  𝑅  Fr  𝑦 )  ∧  ( ( 𝑥  ∖  { 𝑤 } )  ⊆  𝑦  ∧  𝑥  ≠  ∅ ) )  →  ( ∃ 𝑧  ∈  𝑥 𝑧 𝑅 𝑤  →  ( 𝑤  ∈  𝑥  →  ∃ 𝑢  ∈  𝑥 ∀ 𝑣  ∈  𝑥 ¬  𝑣 𝑅 𝑢 ) ) ) | 
						
							| 82 | 25 81 | biimtrid | ⊢ ( ( ( 𝑅  Po  ( 𝑦  ∪  { 𝑤 } )  ∧  𝑅  Fr  𝑦 )  ∧  ( ( 𝑥  ∖  { 𝑤 } )  ⊆  𝑦  ∧  𝑥  ≠  ∅ ) )  →  ( ∃ 𝑣  ∈  𝑥 𝑣 𝑅 𝑤  →  ( 𝑤  ∈  𝑥  →  ∃ 𝑢  ∈  𝑥 ∀ 𝑣  ∈  𝑥 ¬  𝑣 𝑅 𝑢 ) ) ) | 
						
							| 83 |  | ralnex | ⊢ ( ∀ 𝑣  ∈  𝑥 ¬  𝑣 𝑅 𝑤  ↔  ¬  ∃ 𝑣  ∈  𝑥 𝑣 𝑅 𝑤 ) | 
						
							| 84 |  | breq2 | ⊢ ( 𝑢  =  𝑤  →  ( 𝑣 𝑅 𝑢  ↔  𝑣 𝑅 𝑤 ) ) | 
						
							| 85 | 84 | notbid | ⊢ ( 𝑢  =  𝑤  →  ( ¬  𝑣 𝑅 𝑢  ↔  ¬  𝑣 𝑅 𝑤 ) ) | 
						
							| 86 | 85 | ralbidv | ⊢ ( 𝑢  =  𝑤  →  ( ∀ 𝑣  ∈  𝑥 ¬  𝑣 𝑅 𝑢  ↔  ∀ 𝑣  ∈  𝑥 ¬  𝑣 𝑅 𝑤 ) ) | 
						
							| 87 | 86 | rspcev | ⊢ ( ( 𝑤  ∈  𝑥  ∧  ∀ 𝑣  ∈  𝑥 ¬  𝑣 𝑅 𝑤 )  →  ∃ 𝑢  ∈  𝑥 ∀ 𝑣  ∈  𝑥 ¬  𝑣 𝑅 𝑢 ) | 
						
							| 88 | 87 | expcom | ⊢ ( ∀ 𝑣  ∈  𝑥 ¬  𝑣 𝑅 𝑤  →  ( 𝑤  ∈  𝑥  →  ∃ 𝑢  ∈  𝑥 ∀ 𝑣  ∈  𝑥 ¬  𝑣 𝑅 𝑢 ) ) | 
						
							| 89 | 83 88 | sylbir | ⊢ ( ¬  ∃ 𝑣  ∈  𝑥 𝑣 𝑅 𝑤  →  ( 𝑤  ∈  𝑥  →  ∃ 𝑢  ∈  𝑥 ∀ 𝑣  ∈  𝑥 ¬  𝑣 𝑅 𝑢 ) ) | 
						
							| 90 | 82 89 | pm2.61d1 | ⊢ ( ( ( 𝑅  Po  ( 𝑦  ∪  { 𝑤 } )  ∧  𝑅  Fr  𝑦 )  ∧  ( ( 𝑥  ∖  { 𝑤 } )  ⊆  𝑦  ∧  𝑥  ≠  ∅ ) )  →  ( 𝑤  ∈  𝑥  →  ∃ 𝑢  ∈  𝑥 ∀ 𝑣  ∈  𝑥 ¬  𝑣 𝑅 𝑢 ) ) | 
						
							| 91 |  | difsn | ⊢ ( ¬  𝑤  ∈  𝑥  →  ( 𝑥  ∖  { 𝑤 } )  =  𝑥 ) | 
						
							| 92 | 48 | expr | ⊢ ( ( 𝑅  Fr  𝑦  ∧  ( 𝑥  ∖  { 𝑤 } )  ⊆  𝑦 )  →  ( ( 𝑥  ∖  { 𝑤 } )  ≠  ∅  →  ∃ 𝑢  ∈  𝑥 ∀ 𝑣  ∈  ( 𝑥  ∖  { 𝑤 } ) ¬  𝑣 𝑅 𝑢 ) ) | 
						
							| 93 |  | neeq1 | ⊢ ( ( 𝑥  ∖  { 𝑤 } )  =  𝑥  →  ( ( 𝑥  ∖  { 𝑤 } )  ≠  ∅  ↔  𝑥  ≠  ∅ ) ) | 
						
							| 94 |  | raleq | ⊢ ( ( 𝑥  ∖  { 𝑤 } )  =  𝑥  →  ( ∀ 𝑣  ∈  ( 𝑥  ∖  { 𝑤 } ) ¬  𝑣 𝑅 𝑢  ↔  ∀ 𝑣  ∈  𝑥 ¬  𝑣 𝑅 𝑢 ) ) | 
						
							| 95 | 94 | rexbidv | ⊢ ( ( 𝑥  ∖  { 𝑤 } )  =  𝑥  →  ( ∃ 𝑢  ∈  𝑥 ∀ 𝑣  ∈  ( 𝑥  ∖  { 𝑤 } ) ¬  𝑣 𝑅 𝑢  ↔  ∃ 𝑢  ∈  𝑥 ∀ 𝑣  ∈  𝑥 ¬  𝑣 𝑅 𝑢 ) ) | 
						
							| 96 | 93 95 | imbi12d | ⊢ ( ( 𝑥  ∖  { 𝑤 } )  =  𝑥  →  ( ( ( 𝑥  ∖  { 𝑤 } )  ≠  ∅  →  ∃ 𝑢  ∈  𝑥 ∀ 𝑣  ∈  ( 𝑥  ∖  { 𝑤 } ) ¬  𝑣 𝑅 𝑢 )  ↔  ( 𝑥  ≠  ∅  →  ∃ 𝑢  ∈  𝑥 ∀ 𝑣  ∈  𝑥 ¬  𝑣 𝑅 𝑢 ) ) ) | 
						
							| 97 | 92 96 | syl5ibcom | ⊢ ( ( 𝑅  Fr  𝑦  ∧  ( 𝑥  ∖  { 𝑤 } )  ⊆  𝑦 )  →  ( ( 𝑥  ∖  { 𝑤 } )  =  𝑥  →  ( 𝑥  ≠  ∅  →  ∃ 𝑢  ∈  𝑥 ∀ 𝑣  ∈  𝑥 ¬  𝑣 𝑅 𝑢 ) ) ) | 
						
							| 98 | 97 | com23 | ⊢ ( ( 𝑅  Fr  𝑦  ∧  ( 𝑥  ∖  { 𝑤 } )  ⊆  𝑦 )  →  ( 𝑥  ≠  ∅  →  ( ( 𝑥  ∖  { 𝑤 } )  =  𝑥  →  ∃ 𝑢  ∈  𝑥 ∀ 𝑣  ∈  𝑥 ¬  𝑣 𝑅 𝑢 ) ) ) | 
						
							| 99 | 98 | adantll | ⊢ ( ( ( 𝑅  Po  ( 𝑦  ∪  { 𝑤 } )  ∧  𝑅  Fr  𝑦 )  ∧  ( 𝑥  ∖  { 𝑤 } )  ⊆  𝑦 )  →  ( 𝑥  ≠  ∅  →  ( ( 𝑥  ∖  { 𝑤 } )  =  𝑥  →  ∃ 𝑢  ∈  𝑥 ∀ 𝑣  ∈  𝑥 ¬  𝑣 𝑅 𝑢 ) ) ) | 
						
							| 100 | 99 | impr | ⊢ ( ( ( 𝑅  Po  ( 𝑦  ∪  { 𝑤 } )  ∧  𝑅  Fr  𝑦 )  ∧  ( ( 𝑥  ∖  { 𝑤 } )  ⊆  𝑦  ∧  𝑥  ≠  ∅ ) )  →  ( ( 𝑥  ∖  { 𝑤 } )  =  𝑥  →  ∃ 𝑢  ∈  𝑥 ∀ 𝑣  ∈  𝑥 ¬  𝑣 𝑅 𝑢 ) ) | 
						
							| 101 | 91 100 | syl5 | ⊢ ( ( ( 𝑅  Po  ( 𝑦  ∪  { 𝑤 } )  ∧  𝑅  Fr  𝑦 )  ∧  ( ( 𝑥  ∖  { 𝑤 } )  ⊆  𝑦  ∧  𝑥  ≠  ∅ ) )  →  ( ¬  𝑤  ∈  𝑥  →  ∃ 𝑢  ∈  𝑥 ∀ 𝑣  ∈  𝑥 ¬  𝑣 𝑅 𝑢 ) ) | 
						
							| 102 | 90 101 | pm2.61d | ⊢ ( ( ( 𝑅  Po  ( 𝑦  ∪  { 𝑤 } )  ∧  𝑅  Fr  𝑦 )  ∧  ( ( 𝑥  ∖  { 𝑤 } )  ⊆  𝑦  ∧  𝑥  ≠  ∅ ) )  →  ∃ 𝑢  ∈  𝑥 ∀ 𝑣  ∈  𝑥 ¬  𝑣 𝑅 𝑢 ) | 
						
							| 103 | 102 | ex | ⊢ ( ( 𝑅  Po  ( 𝑦  ∪  { 𝑤 } )  ∧  𝑅  Fr  𝑦 )  →  ( ( ( 𝑥  ∖  { 𝑤 } )  ⊆  𝑦  ∧  𝑥  ≠  ∅ )  →  ∃ 𝑢  ∈  𝑥 ∀ 𝑣  ∈  𝑥 ¬  𝑣 𝑅 𝑢 ) ) | 
						
							| 104 | 23 103 | biimtrid | ⊢ ( ( 𝑅  Po  ( 𝑦  ∪  { 𝑤 } )  ∧  𝑅  Fr  𝑦 )  →  ( ( 𝑥  ⊆  ( 𝑦  ∪  { 𝑤 } )  ∧  𝑥  ≠  ∅ )  →  ∃ 𝑢  ∈  𝑥 ∀ 𝑣  ∈  𝑥 ¬  𝑣 𝑅 𝑢 ) ) | 
						
							| 105 | 104 | alrimiv | ⊢ ( ( 𝑅  Po  ( 𝑦  ∪  { 𝑤 } )  ∧  𝑅  Fr  𝑦 )  →  ∀ 𝑥 ( ( 𝑥  ⊆  ( 𝑦  ∪  { 𝑤 } )  ∧  𝑥  ≠  ∅ )  →  ∃ 𝑢  ∈  𝑥 ∀ 𝑣  ∈  𝑥 ¬  𝑣 𝑅 𝑢 ) ) | 
						
							| 106 |  | df-fr | ⊢ ( 𝑅  Fr  ( 𝑦  ∪  { 𝑤 } )  ↔  ∀ 𝑥 ( ( 𝑥  ⊆  ( 𝑦  ∪  { 𝑤 } )  ∧  𝑥  ≠  ∅ )  →  ∃ 𝑢  ∈  𝑥 ∀ 𝑣  ∈  𝑥 ¬  𝑣 𝑅 𝑢 ) ) | 
						
							| 107 | 105 106 | sylibr | ⊢ ( ( 𝑅  Po  ( 𝑦  ∪  { 𝑤 } )  ∧  𝑅  Fr  𝑦 )  →  𝑅  Fr  ( 𝑦  ∪  { 𝑤 } ) ) | 
						
							| 108 | 107 | ex | ⊢ ( 𝑅  Po  ( 𝑦  ∪  { 𝑤 } )  →  ( 𝑅  Fr  𝑦  →  𝑅  Fr  ( 𝑦  ∪  { 𝑤 } ) ) ) | 
						
							| 109 | 18 108 | sylcom | ⊢ ( ( 𝑅  Po  𝑦  →  𝑅  Fr  𝑦 )  →  ( 𝑅  Po  ( 𝑦  ∪  { 𝑤 } )  →  𝑅  Fr  ( 𝑦  ∪  { 𝑤 } ) ) ) | 
						
							| 110 | 109 | a1i | ⊢ ( 𝑦  ∈  Fin  →  ( ( 𝑅  Po  𝑦  →  𝑅  Fr  𝑦 )  →  ( 𝑅  Po  ( 𝑦  ∪  { 𝑤 } )  →  𝑅  Fr  ( 𝑦  ∪  { 𝑤 } ) ) ) ) | 
						
							| 111 | 3 6 9 12 14 110 | findcard2 | ⊢ ( 𝐴  ∈  Fin  →  ( 𝑅  Po  𝐴  →  𝑅  Fr  𝐴 ) ) | 
						
							| 112 | 111 | impcom | ⊢ ( ( 𝑅  Po  𝐴  ∧  𝐴  ∈  Fin )  →  𝑅  Fr  𝐴 ) |