Metamath Proof Explorer


Theorem frfnom

Description: The function generated by finite recursive definition generation is a function on omega. (Contributed by NM, 15-Oct-1996) (Revised by Mario Carneiro, 14-Nov-2014)

Ref Expression
Assertion frfnom ( rec ( 𝐹 , 𝐴 ) ↾ ω ) Fn ω

Proof

Step Hyp Ref Expression
1 rdgfun Fun rec ( 𝐹 , 𝐴 )
2 funres ( Fun rec ( 𝐹 , 𝐴 ) → Fun ( rec ( 𝐹 , 𝐴 ) ↾ ω ) )
3 1 2 ax-mp Fun ( rec ( 𝐹 , 𝐴 ) ↾ ω )
4 dmres dom ( rec ( 𝐹 , 𝐴 ) ↾ ω ) = ( ω ∩ dom rec ( 𝐹 , 𝐴 ) )
5 rdgdmlim Lim dom rec ( 𝐹 , 𝐴 )
6 limomss ( Lim dom rec ( 𝐹 , 𝐴 ) → ω ⊆ dom rec ( 𝐹 , 𝐴 ) )
7 5 6 ax-mp ω ⊆ dom rec ( 𝐹 , 𝐴 )
8 df-ss ( ω ⊆ dom rec ( 𝐹 , 𝐴 ) ↔ ( ω ∩ dom rec ( 𝐹 , 𝐴 ) ) = ω )
9 7 8 mpbi ( ω ∩ dom rec ( 𝐹 , 𝐴 ) ) = ω
10 4 9 eqtri dom ( rec ( 𝐹 , 𝐴 ) ↾ ω ) = ω
11 df-fn ( ( rec ( 𝐹 , 𝐴 ) ↾ ω ) Fn ω ↔ ( Fun ( rec ( 𝐹 , 𝐴 ) ↾ ω ) ∧ dom ( rec ( 𝐹 , 𝐴 ) ↾ ω ) = ω ) )
12 3 10 11 mpbir2an ( rec ( 𝐹 , 𝐴 ) ↾ ω ) Fn ω