Step |
Hyp |
Ref |
Expression |
1 |
|
rdgfun |
⊢ Fun rec ( 𝐹 , 𝐴 ) |
2 |
|
funres |
⊢ ( Fun rec ( 𝐹 , 𝐴 ) → Fun ( rec ( 𝐹 , 𝐴 ) ↾ ω ) ) |
3 |
1 2
|
ax-mp |
⊢ Fun ( rec ( 𝐹 , 𝐴 ) ↾ ω ) |
4 |
|
dmres |
⊢ dom ( rec ( 𝐹 , 𝐴 ) ↾ ω ) = ( ω ∩ dom rec ( 𝐹 , 𝐴 ) ) |
5 |
|
rdgdmlim |
⊢ Lim dom rec ( 𝐹 , 𝐴 ) |
6 |
|
limomss |
⊢ ( Lim dom rec ( 𝐹 , 𝐴 ) → ω ⊆ dom rec ( 𝐹 , 𝐴 ) ) |
7 |
5 6
|
ax-mp |
⊢ ω ⊆ dom rec ( 𝐹 , 𝐴 ) |
8 |
|
df-ss |
⊢ ( ω ⊆ dom rec ( 𝐹 , 𝐴 ) ↔ ( ω ∩ dom rec ( 𝐹 , 𝐴 ) ) = ω ) |
9 |
7 8
|
mpbi |
⊢ ( ω ∩ dom rec ( 𝐹 , 𝐴 ) ) = ω |
10 |
4 9
|
eqtri |
⊢ dom ( rec ( 𝐹 , 𝐴 ) ↾ ω ) = ω |
11 |
|
df-fn |
⊢ ( ( rec ( 𝐹 , 𝐴 ) ↾ ω ) Fn ω ↔ ( Fun ( rec ( 𝐹 , 𝐴 ) ↾ ω ) ∧ dom ( rec ( 𝐹 , 𝐴 ) ↾ ω ) = ω ) ) |
12 |
3 10 11
|
mpbir2an |
⊢ ( rec ( 𝐹 , 𝐴 ) ↾ ω ) Fn ω |