Step |
Hyp |
Ref |
Expression |
1 |
|
frgp0.m |
⊢ 𝐺 = ( freeGrp ‘ 𝐼 ) |
2 |
|
frgp0.r |
⊢ ∼ = ( ~FG ‘ 𝐼 ) |
3 |
|
eqid |
⊢ ( freeMnd ‘ ( 𝐼 × 2o ) ) = ( freeMnd ‘ ( 𝐼 × 2o ) ) |
4 |
1 3 2
|
frgpval |
⊢ ( 𝐼 ∈ 𝑉 → 𝐺 = ( ( freeMnd ‘ ( 𝐼 × 2o ) ) /s ∼ ) ) |
5 |
|
2on |
⊢ 2o ∈ On |
6 |
|
xpexg |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 2o ∈ On ) → ( 𝐼 × 2o ) ∈ V ) |
7 |
5 6
|
mpan2 |
⊢ ( 𝐼 ∈ 𝑉 → ( 𝐼 × 2o ) ∈ V ) |
8 |
|
eqid |
⊢ ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) = ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) |
9 |
3 8
|
frmdbas |
⊢ ( ( 𝐼 × 2o ) ∈ V → ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) = Word ( 𝐼 × 2o ) ) |
10 |
7 9
|
syl |
⊢ ( 𝐼 ∈ 𝑉 → ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) = Word ( 𝐼 × 2o ) ) |
11 |
10
|
eqcomd |
⊢ ( 𝐼 ∈ 𝑉 → Word ( 𝐼 × 2o ) = ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) ) |
12 |
|
eqidd |
⊢ ( 𝐼 ∈ 𝑉 → ( +g ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) = ( +g ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) ) |
13 |
|
eqid |
⊢ ( I ‘ Word ( 𝐼 × 2o ) ) = ( I ‘ Word ( 𝐼 × 2o ) ) |
14 |
13 2
|
efger |
⊢ ∼ Er ( I ‘ Word ( 𝐼 × 2o ) ) |
15 |
|
wrdexg |
⊢ ( ( 𝐼 × 2o ) ∈ V → Word ( 𝐼 × 2o ) ∈ V ) |
16 |
|
fvi |
⊢ ( Word ( 𝐼 × 2o ) ∈ V → ( I ‘ Word ( 𝐼 × 2o ) ) = Word ( 𝐼 × 2o ) ) |
17 |
7 15 16
|
3syl |
⊢ ( 𝐼 ∈ 𝑉 → ( I ‘ Word ( 𝐼 × 2o ) ) = Word ( 𝐼 × 2o ) ) |
18 |
|
ereq2 |
⊢ ( ( I ‘ Word ( 𝐼 × 2o ) ) = Word ( 𝐼 × 2o ) → ( ∼ Er ( I ‘ Word ( 𝐼 × 2o ) ) ↔ ∼ Er Word ( 𝐼 × 2o ) ) ) |
19 |
17 18
|
syl |
⊢ ( 𝐼 ∈ 𝑉 → ( ∼ Er ( I ‘ Word ( 𝐼 × 2o ) ) ↔ ∼ Er Word ( 𝐼 × 2o ) ) ) |
20 |
14 19
|
mpbii |
⊢ ( 𝐼 ∈ 𝑉 → ∼ Er Word ( 𝐼 × 2o ) ) |
21 |
|
fvexd |
⊢ ( 𝐼 ∈ 𝑉 → ( freeMnd ‘ ( 𝐼 × 2o ) ) ∈ V ) |
22 |
|
eqid |
⊢ ( +g ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) = ( +g ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) |
23 |
1 3 2 22
|
frgpcpbl |
⊢ ( ( 𝑎 ∼ 𝑏 ∧ 𝑐 ∼ 𝑑 ) → ( 𝑎 ( +g ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) 𝑐 ) ∼ ( 𝑏 ( +g ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) 𝑑 ) ) |
24 |
23
|
a1i |
⊢ ( 𝐼 ∈ 𝑉 → ( ( 𝑎 ∼ 𝑏 ∧ 𝑐 ∼ 𝑑 ) → ( 𝑎 ( +g ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) 𝑐 ) ∼ ( 𝑏 ( +g ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) 𝑑 ) ) ) |
25 |
3
|
frmdmnd |
⊢ ( ( 𝐼 × 2o ) ∈ V → ( freeMnd ‘ ( 𝐼 × 2o ) ) ∈ Mnd ) |
26 |
7 25
|
syl |
⊢ ( 𝐼 ∈ 𝑉 → ( freeMnd ‘ ( 𝐼 × 2o ) ) ∈ Mnd ) |
27 |
26
|
3ad2ant1 |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑥 ∈ Word ( 𝐼 × 2o ) ∧ 𝑦 ∈ Word ( 𝐼 × 2o ) ) → ( freeMnd ‘ ( 𝐼 × 2o ) ) ∈ Mnd ) |
28 |
|
simp2 |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑥 ∈ Word ( 𝐼 × 2o ) ∧ 𝑦 ∈ Word ( 𝐼 × 2o ) ) → 𝑥 ∈ Word ( 𝐼 × 2o ) ) |
29 |
11
|
3ad2ant1 |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑥 ∈ Word ( 𝐼 × 2o ) ∧ 𝑦 ∈ Word ( 𝐼 × 2o ) ) → Word ( 𝐼 × 2o ) = ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) ) |
30 |
28 29
|
eleqtrd |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑥 ∈ Word ( 𝐼 × 2o ) ∧ 𝑦 ∈ Word ( 𝐼 × 2o ) ) → 𝑥 ∈ ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) ) |
31 |
|
simp3 |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑥 ∈ Word ( 𝐼 × 2o ) ∧ 𝑦 ∈ Word ( 𝐼 × 2o ) ) → 𝑦 ∈ Word ( 𝐼 × 2o ) ) |
32 |
31 29
|
eleqtrd |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑥 ∈ Word ( 𝐼 × 2o ) ∧ 𝑦 ∈ Word ( 𝐼 × 2o ) ) → 𝑦 ∈ ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) ) |
33 |
8 22
|
mndcl |
⊢ ( ( ( freeMnd ‘ ( 𝐼 × 2o ) ) ∈ Mnd ∧ 𝑥 ∈ ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) ∧ 𝑦 ∈ ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) ) → ( 𝑥 ( +g ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) 𝑦 ) ∈ ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) ) |
34 |
27 30 32 33
|
syl3anc |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑥 ∈ Word ( 𝐼 × 2o ) ∧ 𝑦 ∈ Word ( 𝐼 × 2o ) ) → ( 𝑥 ( +g ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) 𝑦 ) ∈ ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) ) |
35 |
34 29
|
eleqtrrd |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑥 ∈ Word ( 𝐼 × 2o ) ∧ 𝑦 ∈ Word ( 𝐼 × 2o ) ) → ( 𝑥 ( +g ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) 𝑦 ) ∈ Word ( 𝐼 × 2o ) ) |
36 |
20
|
adantr |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑥 ∈ Word ( 𝐼 × 2o ) ∧ 𝑦 ∈ Word ( 𝐼 × 2o ) ∧ 𝑧 ∈ Word ( 𝐼 × 2o ) ) ) → ∼ Er Word ( 𝐼 × 2o ) ) |
37 |
26
|
adantr |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑥 ∈ Word ( 𝐼 × 2o ) ∧ 𝑦 ∈ Word ( 𝐼 × 2o ) ∧ 𝑧 ∈ Word ( 𝐼 × 2o ) ) ) → ( freeMnd ‘ ( 𝐼 × 2o ) ) ∈ Mnd ) |
38 |
34
|
3adant3r3 |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑥 ∈ Word ( 𝐼 × 2o ) ∧ 𝑦 ∈ Word ( 𝐼 × 2o ) ∧ 𝑧 ∈ Word ( 𝐼 × 2o ) ) ) → ( 𝑥 ( +g ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) 𝑦 ) ∈ ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) ) |
39 |
|
simpr3 |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑥 ∈ Word ( 𝐼 × 2o ) ∧ 𝑦 ∈ Word ( 𝐼 × 2o ) ∧ 𝑧 ∈ Word ( 𝐼 × 2o ) ) ) → 𝑧 ∈ Word ( 𝐼 × 2o ) ) |
40 |
11
|
adantr |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑥 ∈ Word ( 𝐼 × 2o ) ∧ 𝑦 ∈ Word ( 𝐼 × 2o ) ∧ 𝑧 ∈ Word ( 𝐼 × 2o ) ) ) → Word ( 𝐼 × 2o ) = ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) ) |
41 |
39 40
|
eleqtrd |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑥 ∈ Word ( 𝐼 × 2o ) ∧ 𝑦 ∈ Word ( 𝐼 × 2o ) ∧ 𝑧 ∈ Word ( 𝐼 × 2o ) ) ) → 𝑧 ∈ ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) ) |
42 |
8 22
|
mndcl |
⊢ ( ( ( freeMnd ‘ ( 𝐼 × 2o ) ) ∈ Mnd ∧ ( 𝑥 ( +g ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) 𝑦 ) ∈ ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) ∧ 𝑧 ∈ ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) ) → ( ( 𝑥 ( +g ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) 𝑦 ) ( +g ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) 𝑧 ) ∈ ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) ) |
43 |
37 38 41 42
|
syl3anc |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑥 ∈ Word ( 𝐼 × 2o ) ∧ 𝑦 ∈ Word ( 𝐼 × 2o ) ∧ 𝑧 ∈ Word ( 𝐼 × 2o ) ) ) → ( ( 𝑥 ( +g ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) 𝑦 ) ( +g ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) 𝑧 ) ∈ ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) ) |
44 |
43 40
|
eleqtrrd |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑥 ∈ Word ( 𝐼 × 2o ) ∧ 𝑦 ∈ Word ( 𝐼 × 2o ) ∧ 𝑧 ∈ Word ( 𝐼 × 2o ) ) ) → ( ( 𝑥 ( +g ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) 𝑦 ) ( +g ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) 𝑧 ) ∈ Word ( 𝐼 × 2o ) ) |
45 |
36 44
|
erref |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑥 ∈ Word ( 𝐼 × 2o ) ∧ 𝑦 ∈ Word ( 𝐼 × 2o ) ∧ 𝑧 ∈ Word ( 𝐼 × 2o ) ) ) → ( ( 𝑥 ( +g ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) 𝑦 ) ( +g ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) 𝑧 ) ∼ ( ( 𝑥 ( +g ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) 𝑦 ) ( +g ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) 𝑧 ) ) |
46 |
30
|
3adant3r3 |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑥 ∈ Word ( 𝐼 × 2o ) ∧ 𝑦 ∈ Word ( 𝐼 × 2o ) ∧ 𝑧 ∈ Word ( 𝐼 × 2o ) ) ) → 𝑥 ∈ ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) ) |
47 |
32
|
3adant3r3 |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑥 ∈ Word ( 𝐼 × 2o ) ∧ 𝑦 ∈ Word ( 𝐼 × 2o ) ∧ 𝑧 ∈ Word ( 𝐼 × 2o ) ) ) → 𝑦 ∈ ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) ) |
48 |
8 22
|
mndass |
⊢ ( ( ( freeMnd ‘ ( 𝐼 × 2o ) ) ∈ Mnd ∧ ( 𝑥 ∈ ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) ∧ 𝑦 ∈ ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) ∧ 𝑧 ∈ ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) ) ) → ( ( 𝑥 ( +g ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) 𝑦 ) ( +g ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) 𝑧 ) = ( 𝑥 ( +g ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) ( 𝑦 ( +g ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) 𝑧 ) ) ) |
49 |
37 46 47 41 48
|
syl13anc |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑥 ∈ Word ( 𝐼 × 2o ) ∧ 𝑦 ∈ Word ( 𝐼 × 2o ) ∧ 𝑧 ∈ Word ( 𝐼 × 2o ) ) ) → ( ( 𝑥 ( +g ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) 𝑦 ) ( +g ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) 𝑧 ) = ( 𝑥 ( +g ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) ( 𝑦 ( +g ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) 𝑧 ) ) ) |
50 |
45 49
|
breqtrd |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑥 ∈ Word ( 𝐼 × 2o ) ∧ 𝑦 ∈ Word ( 𝐼 × 2o ) ∧ 𝑧 ∈ Word ( 𝐼 × 2o ) ) ) → ( ( 𝑥 ( +g ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) 𝑦 ) ( +g ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) 𝑧 ) ∼ ( 𝑥 ( +g ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) ( 𝑦 ( +g ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) 𝑧 ) ) ) |
51 |
|
wrd0 |
⊢ ∅ ∈ Word ( 𝐼 × 2o ) |
52 |
51
|
a1i |
⊢ ( 𝐼 ∈ 𝑉 → ∅ ∈ Word ( 𝐼 × 2o ) ) |
53 |
51 11
|
eleqtrid |
⊢ ( 𝐼 ∈ 𝑉 → ∅ ∈ ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) ) |
54 |
53
|
adantr |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑥 ∈ Word ( 𝐼 × 2o ) ) → ∅ ∈ ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) ) |
55 |
11
|
eleq2d |
⊢ ( 𝐼 ∈ 𝑉 → ( 𝑥 ∈ Word ( 𝐼 × 2o ) ↔ 𝑥 ∈ ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) ) ) |
56 |
55
|
biimpa |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑥 ∈ Word ( 𝐼 × 2o ) ) → 𝑥 ∈ ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) ) |
57 |
3 8 22
|
frmdadd |
⊢ ( ( ∅ ∈ ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) ∧ 𝑥 ∈ ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) ) → ( ∅ ( +g ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) 𝑥 ) = ( ∅ ++ 𝑥 ) ) |
58 |
54 56 57
|
syl2anc |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑥 ∈ Word ( 𝐼 × 2o ) ) → ( ∅ ( +g ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) 𝑥 ) = ( ∅ ++ 𝑥 ) ) |
59 |
|
ccatlid |
⊢ ( 𝑥 ∈ Word ( 𝐼 × 2o ) → ( ∅ ++ 𝑥 ) = 𝑥 ) |
60 |
59
|
adantl |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑥 ∈ Word ( 𝐼 × 2o ) ) → ( ∅ ++ 𝑥 ) = 𝑥 ) |
61 |
58 60
|
eqtrd |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑥 ∈ Word ( 𝐼 × 2o ) ) → ( ∅ ( +g ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) 𝑥 ) = 𝑥 ) |
62 |
20
|
adantr |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑥 ∈ Word ( 𝐼 × 2o ) ) → ∼ Er Word ( 𝐼 × 2o ) ) |
63 |
|
simpr |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑥 ∈ Word ( 𝐼 × 2o ) ) → 𝑥 ∈ Word ( 𝐼 × 2o ) ) |
64 |
62 63
|
erref |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑥 ∈ Word ( 𝐼 × 2o ) ) → 𝑥 ∼ 𝑥 ) |
65 |
61 64
|
eqbrtrd |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑥 ∈ Word ( 𝐼 × 2o ) ) → ( ∅ ( +g ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) 𝑥 ) ∼ 𝑥 ) |
66 |
|
revcl |
⊢ ( 𝑥 ∈ Word ( 𝐼 × 2o ) → ( reverse ‘ 𝑥 ) ∈ Word ( 𝐼 × 2o ) ) |
67 |
66
|
adantl |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑥 ∈ Word ( 𝐼 × 2o ) ) → ( reverse ‘ 𝑥 ) ∈ Word ( 𝐼 × 2o ) ) |
68 |
|
eqid |
⊢ ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ) = ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ) |
69 |
68
|
efgmf |
⊢ ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ) : ( 𝐼 × 2o ) ⟶ ( 𝐼 × 2o ) |
70 |
69
|
a1i |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑥 ∈ Word ( 𝐼 × 2o ) ) → ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ) : ( 𝐼 × 2o ) ⟶ ( 𝐼 × 2o ) ) |
71 |
|
wrdco |
⊢ ( ( ( reverse ‘ 𝑥 ) ∈ Word ( 𝐼 × 2o ) ∧ ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ) : ( 𝐼 × 2o ) ⟶ ( 𝐼 × 2o ) ) → ( ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ) ∘ ( reverse ‘ 𝑥 ) ) ∈ Word ( 𝐼 × 2o ) ) |
72 |
67 70 71
|
syl2anc |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑥 ∈ Word ( 𝐼 × 2o ) ) → ( ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ) ∘ ( reverse ‘ 𝑥 ) ) ∈ Word ( 𝐼 × 2o ) ) |
73 |
11
|
adantr |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑥 ∈ Word ( 𝐼 × 2o ) ) → Word ( 𝐼 × 2o ) = ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) ) |
74 |
72 73
|
eleqtrd |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑥 ∈ Word ( 𝐼 × 2o ) ) → ( ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ) ∘ ( reverse ‘ 𝑥 ) ) ∈ ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) ) |
75 |
3 8 22
|
frmdadd |
⊢ ( ( ( ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ) ∘ ( reverse ‘ 𝑥 ) ) ∈ ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) ∧ 𝑥 ∈ ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) ) → ( ( ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ) ∘ ( reverse ‘ 𝑥 ) ) ( +g ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) 𝑥 ) = ( ( ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ) ∘ ( reverse ‘ 𝑥 ) ) ++ 𝑥 ) ) |
76 |
74 56 75
|
syl2anc |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑥 ∈ Word ( 𝐼 × 2o ) ) → ( ( ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ) ∘ ( reverse ‘ 𝑥 ) ) ( +g ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) 𝑥 ) = ( ( ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ) ∘ ( reverse ‘ 𝑥 ) ) ++ 𝑥 ) ) |
77 |
17
|
eleq2d |
⊢ ( 𝐼 ∈ 𝑉 → ( 𝑥 ∈ ( I ‘ Word ( 𝐼 × 2o ) ) ↔ 𝑥 ∈ Word ( 𝐼 × 2o ) ) ) |
78 |
77
|
biimpar |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑥 ∈ Word ( 𝐼 × 2o ) ) → 𝑥 ∈ ( I ‘ Word ( 𝐼 × 2o ) ) ) |
79 |
|
eqid |
⊢ ( 𝑣 ∈ ( I ‘ Word ( 𝐼 × 2o ) ) ↦ ( 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑣 ) ) , 𝑤 ∈ ( 𝐼 × 2o ) ↦ ( 𝑣 splice 〈 𝑛 , 𝑛 , 〈“ 𝑤 ( ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ) ‘ 𝑤 ) ”〉 〉 ) ) ) = ( 𝑣 ∈ ( I ‘ Word ( 𝐼 × 2o ) ) ↦ ( 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑣 ) ) , 𝑤 ∈ ( 𝐼 × 2o ) ↦ ( 𝑣 splice 〈 𝑛 , 𝑛 , 〈“ 𝑤 ( ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ) ‘ 𝑤 ) ”〉 〉 ) ) ) |
80 |
13 2 68 79
|
efginvrel1 |
⊢ ( 𝑥 ∈ ( I ‘ Word ( 𝐼 × 2o ) ) → ( ( ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ) ∘ ( reverse ‘ 𝑥 ) ) ++ 𝑥 ) ∼ ∅ ) |
81 |
78 80
|
syl |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑥 ∈ Word ( 𝐼 × 2o ) ) → ( ( ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ) ∘ ( reverse ‘ 𝑥 ) ) ++ 𝑥 ) ∼ ∅ ) |
82 |
76 81
|
eqbrtrd |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑥 ∈ Word ( 𝐼 × 2o ) ) → ( ( ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ) ∘ ( reverse ‘ 𝑥 ) ) ( +g ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) 𝑥 ) ∼ ∅ ) |
83 |
4 11 12 20 21 24 35 50 52 65 72 82
|
qusgrp2 |
⊢ ( 𝐼 ∈ 𝑉 → ( 𝐺 ∈ Grp ∧ [ ∅ ] ∼ = ( 0g ‘ 𝐺 ) ) ) |