Step |
Hyp |
Ref |
Expression |
1 |
|
frgpadd.w |
⊢ 𝑊 = ( I ‘ Word ( 𝐼 × 2o ) ) |
2 |
|
frgpadd.g |
⊢ 𝐺 = ( freeGrp ‘ 𝐼 ) |
3 |
|
frgpadd.r |
⊢ ∼ = ( ~FG ‘ 𝐼 ) |
4 |
|
frgpadd.n |
⊢ + = ( +g ‘ 𝐺 ) |
5 |
|
simpl |
⊢ ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) → 𝐴 ∈ 𝑊 ) |
6 |
|
simpr |
⊢ ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) → 𝐵 ∈ 𝑊 ) |
7 |
1
|
efgrcl |
⊢ ( 𝐴 ∈ 𝑊 → ( 𝐼 ∈ V ∧ 𝑊 = Word ( 𝐼 × 2o ) ) ) |
8 |
7
|
adantr |
⊢ ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐼 ∈ V ∧ 𝑊 = Word ( 𝐼 × 2o ) ) ) |
9 |
8
|
simpld |
⊢ ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) → 𝐼 ∈ V ) |
10 |
|
eqid |
⊢ ( freeMnd ‘ ( 𝐼 × 2o ) ) = ( freeMnd ‘ ( 𝐼 × 2o ) ) |
11 |
2 10 3
|
frgpval |
⊢ ( 𝐼 ∈ V → 𝐺 = ( ( freeMnd ‘ ( 𝐼 × 2o ) ) /s ∼ ) ) |
12 |
9 11
|
syl |
⊢ ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) → 𝐺 = ( ( freeMnd ‘ ( 𝐼 × 2o ) ) /s ∼ ) ) |
13 |
8
|
simprd |
⊢ ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) → 𝑊 = Word ( 𝐼 × 2o ) ) |
14 |
|
2on |
⊢ 2o ∈ On |
15 |
|
xpexg |
⊢ ( ( 𝐼 ∈ V ∧ 2o ∈ On ) → ( 𝐼 × 2o ) ∈ V ) |
16 |
9 14 15
|
sylancl |
⊢ ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐼 × 2o ) ∈ V ) |
17 |
|
eqid |
⊢ ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) = ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) |
18 |
10 17
|
frmdbas |
⊢ ( ( 𝐼 × 2o ) ∈ V → ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) = Word ( 𝐼 × 2o ) ) |
19 |
16 18
|
syl |
⊢ ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) → ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) = Word ( 𝐼 × 2o ) ) |
20 |
13 19
|
eqtr4d |
⊢ ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) → 𝑊 = ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) ) |
21 |
1 3
|
efger |
⊢ ∼ Er 𝑊 |
22 |
21
|
a1i |
⊢ ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) → ∼ Er 𝑊 ) |
23 |
10
|
frmdmnd |
⊢ ( ( 𝐼 × 2o ) ∈ V → ( freeMnd ‘ ( 𝐼 × 2o ) ) ∈ Mnd ) |
24 |
16 23
|
syl |
⊢ ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) → ( freeMnd ‘ ( 𝐼 × 2o ) ) ∈ Mnd ) |
25 |
|
eqid |
⊢ ( +g ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) = ( +g ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) |
26 |
2 10 3 25
|
frgpcpbl |
⊢ ( ( 𝑎 ∼ 𝑏 ∧ 𝑐 ∼ 𝑑 ) → ( 𝑎 ( +g ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) 𝑐 ) ∼ ( 𝑏 ( +g ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) 𝑑 ) ) |
27 |
26
|
a1i |
⊢ ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) → ( ( 𝑎 ∼ 𝑏 ∧ 𝑐 ∼ 𝑑 ) → ( 𝑎 ( +g ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) 𝑐 ) ∼ ( 𝑏 ( +g ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) 𝑑 ) ) ) |
28 |
24
|
adantr |
⊢ ( ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) ∧ ( 𝑏 ∈ 𝑊 ∧ 𝑑 ∈ 𝑊 ) ) → ( freeMnd ‘ ( 𝐼 × 2o ) ) ∈ Mnd ) |
29 |
|
simprl |
⊢ ( ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) ∧ ( 𝑏 ∈ 𝑊 ∧ 𝑑 ∈ 𝑊 ) ) → 𝑏 ∈ 𝑊 ) |
30 |
20
|
adantr |
⊢ ( ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) ∧ ( 𝑏 ∈ 𝑊 ∧ 𝑑 ∈ 𝑊 ) ) → 𝑊 = ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) ) |
31 |
29 30
|
eleqtrd |
⊢ ( ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) ∧ ( 𝑏 ∈ 𝑊 ∧ 𝑑 ∈ 𝑊 ) ) → 𝑏 ∈ ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) ) |
32 |
|
simprr |
⊢ ( ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) ∧ ( 𝑏 ∈ 𝑊 ∧ 𝑑 ∈ 𝑊 ) ) → 𝑑 ∈ 𝑊 ) |
33 |
32 30
|
eleqtrd |
⊢ ( ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) ∧ ( 𝑏 ∈ 𝑊 ∧ 𝑑 ∈ 𝑊 ) ) → 𝑑 ∈ ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) ) |
34 |
17 25
|
mndcl |
⊢ ( ( ( freeMnd ‘ ( 𝐼 × 2o ) ) ∈ Mnd ∧ 𝑏 ∈ ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) ∧ 𝑑 ∈ ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) ) → ( 𝑏 ( +g ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) 𝑑 ) ∈ ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) ) |
35 |
28 31 33 34
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) ∧ ( 𝑏 ∈ 𝑊 ∧ 𝑑 ∈ 𝑊 ) ) → ( 𝑏 ( +g ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) 𝑑 ) ∈ ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) ) |
36 |
35 30
|
eleqtrrd |
⊢ ( ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) ∧ ( 𝑏 ∈ 𝑊 ∧ 𝑑 ∈ 𝑊 ) ) → ( 𝑏 ( +g ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) 𝑑 ) ∈ 𝑊 ) |
37 |
12 20 22 24 27 36 25 4
|
qusaddval |
⊢ ( ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) → ( [ 𝐴 ] ∼ + [ 𝐵 ] ∼ ) = [ ( 𝐴 ( +g ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) 𝐵 ) ] ∼ ) |
38 |
5 6 37
|
mpd3an23 |
⊢ ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) → ( [ 𝐴 ] ∼ + [ 𝐵 ] ∼ ) = [ ( 𝐴 ( +g ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) 𝐵 ) ] ∼ ) |
39 |
5 20
|
eleqtrd |
⊢ ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) → 𝐴 ∈ ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) ) |
40 |
6 20
|
eleqtrd |
⊢ ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) → 𝐵 ∈ ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) ) |
41 |
10 17 25
|
frmdadd |
⊢ ( ( 𝐴 ∈ ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) ∧ 𝐵 ∈ ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) ) → ( 𝐴 ( +g ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) 𝐵 ) = ( 𝐴 ++ 𝐵 ) ) |
42 |
39 40 41
|
syl2anc |
⊢ ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 ( +g ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) 𝐵 ) = ( 𝐴 ++ 𝐵 ) ) |
43 |
42
|
eceq1d |
⊢ ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) → [ ( 𝐴 ( +g ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) 𝐵 ) ] ∼ = [ ( 𝐴 ++ 𝐵 ) ] ∼ ) |
44 |
38 43
|
eqtrd |
⊢ ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) → ( [ 𝐴 ] ∼ + [ 𝐵 ] ∼ ) = [ ( 𝐴 ++ 𝐵 ) ] ∼ ) |