| Step | Hyp | Ref | Expression | 
						
							| 1 |  | frgp0.m | ⊢ 𝐺  =  ( freeGrp ‘ 𝐼 ) | 
						
							| 2 |  | frgp0.r | ⊢  ∼   =  (  ~FG  ‘ 𝐼 ) | 
						
							| 3 |  | frgpeccl.w | ⊢ 𝑊  =  (  I  ‘ Word  ( 𝐼  ×  2o ) ) | 
						
							| 4 |  | frgpeccl.b | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 5 | 2 | fvexi | ⊢  ∼   ∈  V | 
						
							| 6 | 5 | ecelqsi | ⊢ ( 𝑋  ∈  𝑊  →  [ 𝑋 ]  ∼   ∈  ( 𝑊  /   ∼  ) ) | 
						
							| 7 | 3 | efgrcl | ⊢ ( 𝑋  ∈  𝑊  →  ( 𝐼  ∈  V  ∧  𝑊  =  Word  ( 𝐼  ×  2o ) ) ) | 
						
							| 8 | 7 | simpld | ⊢ ( 𝑋  ∈  𝑊  →  𝐼  ∈  V ) | 
						
							| 9 |  | eqid | ⊢ ( freeMnd ‘ ( 𝐼  ×  2o ) )  =  ( freeMnd ‘ ( 𝐼  ×  2o ) ) | 
						
							| 10 | 1 9 2 | frgpval | ⊢ ( 𝐼  ∈  V  →  𝐺  =  ( ( freeMnd ‘ ( 𝐼  ×  2o ) )  /s   ∼  ) ) | 
						
							| 11 | 8 10 | syl | ⊢ ( 𝑋  ∈  𝑊  →  𝐺  =  ( ( freeMnd ‘ ( 𝐼  ×  2o ) )  /s   ∼  ) ) | 
						
							| 12 | 7 | simprd | ⊢ ( 𝑋  ∈  𝑊  →  𝑊  =  Word  ( 𝐼  ×  2o ) ) | 
						
							| 13 |  | 2on | ⊢ 2o  ∈  On | 
						
							| 14 |  | xpexg | ⊢ ( ( 𝐼  ∈  V  ∧  2o  ∈  On )  →  ( 𝐼  ×  2o )  ∈  V ) | 
						
							| 15 | 8 13 14 | sylancl | ⊢ ( 𝑋  ∈  𝑊  →  ( 𝐼  ×  2o )  ∈  V ) | 
						
							| 16 |  | eqid | ⊢ ( Base ‘ ( freeMnd ‘ ( 𝐼  ×  2o ) ) )  =  ( Base ‘ ( freeMnd ‘ ( 𝐼  ×  2o ) ) ) | 
						
							| 17 | 9 16 | frmdbas | ⊢ ( ( 𝐼  ×  2o )  ∈  V  →  ( Base ‘ ( freeMnd ‘ ( 𝐼  ×  2o ) ) )  =  Word  ( 𝐼  ×  2o ) ) | 
						
							| 18 | 15 17 | syl | ⊢ ( 𝑋  ∈  𝑊  →  ( Base ‘ ( freeMnd ‘ ( 𝐼  ×  2o ) ) )  =  Word  ( 𝐼  ×  2o ) ) | 
						
							| 19 | 12 18 | eqtr4d | ⊢ ( 𝑋  ∈  𝑊  →  𝑊  =  ( Base ‘ ( freeMnd ‘ ( 𝐼  ×  2o ) ) ) ) | 
						
							| 20 | 5 | a1i | ⊢ ( 𝑋  ∈  𝑊  →   ∼   ∈  V ) | 
						
							| 21 |  | fvexd | ⊢ ( 𝑋  ∈  𝑊  →  ( freeMnd ‘ ( 𝐼  ×  2o ) )  ∈  V ) | 
						
							| 22 | 11 19 20 21 | qusbas | ⊢ ( 𝑋  ∈  𝑊  →  ( 𝑊  /   ∼  )  =  ( Base ‘ 𝐺 ) ) | 
						
							| 23 | 22 4 | eqtr4di | ⊢ ( 𝑋  ∈  𝑊  →  ( 𝑊  /   ∼  )  =  𝐵 ) | 
						
							| 24 | 6 23 | eleqtrd | ⊢ ( 𝑋  ∈  𝑊  →  [ 𝑋 ]  ∼   ∈  𝐵 ) |