Step |
Hyp |
Ref |
Expression |
1 |
|
frgp0.m |
⊢ 𝐺 = ( freeGrp ‘ 𝐼 ) |
2 |
|
frgp0.r |
⊢ ∼ = ( ~FG ‘ 𝐼 ) |
3 |
|
frgpeccl.w |
⊢ 𝑊 = ( I ‘ Word ( 𝐼 × 2o ) ) |
4 |
|
frgpeccl.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
5 |
2
|
fvexi |
⊢ ∼ ∈ V |
6 |
5
|
ecelqsi |
⊢ ( 𝑋 ∈ 𝑊 → [ 𝑋 ] ∼ ∈ ( 𝑊 / ∼ ) ) |
7 |
3
|
efgrcl |
⊢ ( 𝑋 ∈ 𝑊 → ( 𝐼 ∈ V ∧ 𝑊 = Word ( 𝐼 × 2o ) ) ) |
8 |
7
|
simpld |
⊢ ( 𝑋 ∈ 𝑊 → 𝐼 ∈ V ) |
9 |
|
eqid |
⊢ ( freeMnd ‘ ( 𝐼 × 2o ) ) = ( freeMnd ‘ ( 𝐼 × 2o ) ) |
10 |
1 9 2
|
frgpval |
⊢ ( 𝐼 ∈ V → 𝐺 = ( ( freeMnd ‘ ( 𝐼 × 2o ) ) /s ∼ ) ) |
11 |
8 10
|
syl |
⊢ ( 𝑋 ∈ 𝑊 → 𝐺 = ( ( freeMnd ‘ ( 𝐼 × 2o ) ) /s ∼ ) ) |
12 |
7
|
simprd |
⊢ ( 𝑋 ∈ 𝑊 → 𝑊 = Word ( 𝐼 × 2o ) ) |
13 |
|
2on |
⊢ 2o ∈ On |
14 |
|
xpexg |
⊢ ( ( 𝐼 ∈ V ∧ 2o ∈ On ) → ( 𝐼 × 2o ) ∈ V ) |
15 |
8 13 14
|
sylancl |
⊢ ( 𝑋 ∈ 𝑊 → ( 𝐼 × 2o ) ∈ V ) |
16 |
|
eqid |
⊢ ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) = ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) |
17 |
9 16
|
frmdbas |
⊢ ( ( 𝐼 × 2o ) ∈ V → ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) = Word ( 𝐼 × 2o ) ) |
18 |
15 17
|
syl |
⊢ ( 𝑋 ∈ 𝑊 → ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) = Word ( 𝐼 × 2o ) ) |
19 |
12 18
|
eqtr4d |
⊢ ( 𝑋 ∈ 𝑊 → 𝑊 = ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) ) |
20 |
5
|
a1i |
⊢ ( 𝑋 ∈ 𝑊 → ∼ ∈ V ) |
21 |
|
fvexd |
⊢ ( 𝑋 ∈ 𝑊 → ( freeMnd ‘ ( 𝐼 × 2o ) ) ∈ V ) |
22 |
11 19 20 21
|
qusbas |
⊢ ( 𝑋 ∈ 𝑊 → ( 𝑊 / ∼ ) = ( Base ‘ 𝐺 ) ) |
23 |
22 4
|
eqtr4di |
⊢ ( 𝑋 ∈ 𝑊 → ( 𝑊 / ∼ ) = 𝐵 ) |
24 |
6 23
|
eleqtrd |
⊢ ( 𝑋 ∈ 𝑊 → [ 𝑋 ] ∼ ∈ 𝐵 ) |