Metamath Proof Explorer


Theorem frgpeccl

Description: Closure of the quotient map in a free group. (Contributed by Mario Carneiro, 1-Oct-2015)

Ref Expression
Hypotheses frgp0.m 𝐺 = ( freeGrp ‘ 𝐼 )
frgp0.r = ( ~FG𝐼 )
frgpeccl.w 𝑊 = ( I ‘ Word ( 𝐼 × 2o ) )
frgpeccl.b 𝐵 = ( Base ‘ 𝐺 )
Assertion frgpeccl ( 𝑋𝑊 → [ 𝑋 ] 𝐵 )

Proof

Step Hyp Ref Expression
1 frgp0.m 𝐺 = ( freeGrp ‘ 𝐼 )
2 frgp0.r = ( ~FG𝐼 )
3 frgpeccl.w 𝑊 = ( I ‘ Word ( 𝐼 × 2o ) )
4 frgpeccl.b 𝐵 = ( Base ‘ 𝐺 )
5 2 fvexi ∈ V
6 5 ecelqsi ( 𝑋𝑊 → [ 𝑋 ] ∈ ( 𝑊 / ) )
7 3 efgrcl ( 𝑋𝑊 → ( 𝐼 ∈ V ∧ 𝑊 = Word ( 𝐼 × 2o ) ) )
8 7 simpld ( 𝑋𝑊𝐼 ∈ V )
9 eqid ( freeMnd ‘ ( 𝐼 × 2o ) ) = ( freeMnd ‘ ( 𝐼 × 2o ) )
10 1 9 2 frgpval ( 𝐼 ∈ V → 𝐺 = ( ( freeMnd ‘ ( 𝐼 × 2o ) ) /s ) )
11 8 10 syl ( 𝑋𝑊𝐺 = ( ( freeMnd ‘ ( 𝐼 × 2o ) ) /s ) )
12 7 simprd ( 𝑋𝑊𝑊 = Word ( 𝐼 × 2o ) )
13 2on 2o ∈ On
14 xpexg ( ( 𝐼 ∈ V ∧ 2o ∈ On ) → ( 𝐼 × 2o ) ∈ V )
15 8 13 14 sylancl ( 𝑋𝑊 → ( 𝐼 × 2o ) ∈ V )
16 eqid ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) = ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) )
17 9 16 frmdbas ( ( 𝐼 × 2o ) ∈ V → ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) = Word ( 𝐼 × 2o ) )
18 15 17 syl ( 𝑋𝑊 → ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) = Word ( 𝐼 × 2o ) )
19 12 18 eqtr4d ( 𝑋𝑊𝑊 = ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) )
20 5 a1i ( 𝑋𝑊 ∈ V )
21 fvexd ( 𝑋𝑊 → ( freeMnd ‘ ( 𝐼 × 2o ) ) ∈ V )
22 11 19 20 21 qusbas ( 𝑋𝑊 → ( 𝑊 / ) = ( Base ‘ 𝐺 ) )
23 22 4 eqtr4di ( 𝑋𝑊 → ( 𝑊 / ) = 𝐵 )
24 6 23 eleqtrd ( 𝑋𝑊 → [ 𝑋 ] 𝐵 )