Description: The free group is a group. (Contributed by Mario Carneiro, 1-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | frgpgrp.g | ⊢ 𝐺 = ( freeGrp ‘ 𝐼 ) | |
| Assertion | frgpgrp | ⊢ ( 𝐼 ∈ 𝑉 → 𝐺 ∈ Grp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frgpgrp.g | ⊢ 𝐺 = ( freeGrp ‘ 𝐼 ) | |
| 2 | eqid | ⊢ ( ~FG ‘ 𝐼 ) = ( ~FG ‘ 𝐼 ) | |
| 3 | 1 2 | frgp0 | ⊢ ( 𝐼 ∈ 𝑉 → ( 𝐺 ∈ Grp ∧ [ ∅ ] ( ~FG ‘ 𝐼 ) = ( 0g ‘ 𝐺 ) ) ) |
| 4 | 3 | simpld | ⊢ ( 𝐼 ∈ 𝑉 → 𝐺 ∈ Grp ) |