Step |
Hyp |
Ref |
Expression |
1 |
|
frgpadd.w |
⊢ 𝑊 = ( I ‘ Word ( 𝐼 × 2o ) ) |
2 |
|
frgpadd.g |
⊢ 𝐺 = ( freeGrp ‘ 𝐼 ) |
3 |
|
frgpadd.r |
⊢ ∼ = ( ~FG ‘ 𝐼 ) |
4 |
|
frgpinv.n |
⊢ 𝑁 = ( invg ‘ 𝐺 ) |
5 |
|
frgpinv.m |
⊢ 𝑀 = ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ) |
6 |
|
fviss |
⊢ ( I ‘ Word ( 𝐼 × 2o ) ) ⊆ Word ( 𝐼 × 2o ) |
7 |
1 6
|
eqsstri |
⊢ 𝑊 ⊆ Word ( 𝐼 × 2o ) |
8 |
7
|
sseli |
⊢ ( 𝐴 ∈ 𝑊 → 𝐴 ∈ Word ( 𝐼 × 2o ) ) |
9 |
|
revcl |
⊢ ( 𝐴 ∈ Word ( 𝐼 × 2o ) → ( reverse ‘ 𝐴 ) ∈ Word ( 𝐼 × 2o ) ) |
10 |
8 9
|
syl |
⊢ ( 𝐴 ∈ 𝑊 → ( reverse ‘ 𝐴 ) ∈ Word ( 𝐼 × 2o ) ) |
11 |
5
|
efgmf |
⊢ 𝑀 : ( 𝐼 × 2o ) ⟶ ( 𝐼 × 2o ) |
12 |
|
wrdco |
⊢ ( ( ( reverse ‘ 𝐴 ) ∈ Word ( 𝐼 × 2o ) ∧ 𝑀 : ( 𝐼 × 2o ) ⟶ ( 𝐼 × 2o ) ) → ( 𝑀 ∘ ( reverse ‘ 𝐴 ) ) ∈ Word ( 𝐼 × 2o ) ) |
13 |
10 11 12
|
sylancl |
⊢ ( 𝐴 ∈ 𝑊 → ( 𝑀 ∘ ( reverse ‘ 𝐴 ) ) ∈ Word ( 𝐼 × 2o ) ) |
14 |
1
|
efgrcl |
⊢ ( 𝐴 ∈ 𝑊 → ( 𝐼 ∈ V ∧ 𝑊 = Word ( 𝐼 × 2o ) ) ) |
15 |
14
|
simprd |
⊢ ( 𝐴 ∈ 𝑊 → 𝑊 = Word ( 𝐼 × 2o ) ) |
16 |
13 15
|
eleqtrrd |
⊢ ( 𝐴 ∈ 𝑊 → ( 𝑀 ∘ ( reverse ‘ 𝐴 ) ) ∈ 𝑊 ) |
17 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
18 |
1 2 3 17
|
frgpadd |
⊢ ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑀 ∘ ( reverse ‘ 𝐴 ) ) ∈ 𝑊 ) → ( [ 𝐴 ] ∼ ( +g ‘ 𝐺 ) [ ( 𝑀 ∘ ( reverse ‘ 𝐴 ) ) ] ∼ ) = [ ( 𝐴 ++ ( 𝑀 ∘ ( reverse ‘ 𝐴 ) ) ) ] ∼ ) |
19 |
16 18
|
mpdan |
⊢ ( 𝐴 ∈ 𝑊 → ( [ 𝐴 ] ∼ ( +g ‘ 𝐺 ) [ ( 𝑀 ∘ ( reverse ‘ 𝐴 ) ) ] ∼ ) = [ ( 𝐴 ++ ( 𝑀 ∘ ( reverse ‘ 𝐴 ) ) ) ] ∼ ) |
20 |
1 3
|
efger |
⊢ ∼ Er 𝑊 |
21 |
20
|
a1i |
⊢ ( 𝐴 ∈ 𝑊 → ∼ Er 𝑊 ) |
22 |
|
eqid |
⊢ ( 𝑣 ∈ 𝑊 ↦ ( 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑣 ) ) , 𝑤 ∈ ( 𝐼 × 2o ) ↦ ( 𝑣 splice 〈 𝑛 , 𝑛 , 〈“ 𝑤 ( 𝑀 ‘ 𝑤 ) ”〉 〉 ) ) ) = ( 𝑣 ∈ 𝑊 ↦ ( 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑣 ) ) , 𝑤 ∈ ( 𝐼 × 2o ) ↦ ( 𝑣 splice 〈 𝑛 , 𝑛 , 〈“ 𝑤 ( 𝑀 ‘ 𝑤 ) ”〉 〉 ) ) ) |
23 |
1 3 5 22
|
efginvrel2 |
⊢ ( 𝐴 ∈ 𝑊 → ( 𝐴 ++ ( 𝑀 ∘ ( reverse ‘ 𝐴 ) ) ) ∼ ∅ ) |
24 |
21 23
|
erthi |
⊢ ( 𝐴 ∈ 𝑊 → [ ( 𝐴 ++ ( 𝑀 ∘ ( reverse ‘ 𝐴 ) ) ) ] ∼ = [ ∅ ] ∼ ) |
25 |
2 3
|
frgp0 |
⊢ ( 𝐼 ∈ V → ( 𝐺 ∈ Grp ∧ [ ∅ ] ∼ = ( 0g ‘ 𝐺 ) ) ) |
26 |
25
|
adantr |
⊢ ( ( 𝐼 ∈ V ∧ 𝑊 = Word ( 𝐼 × 2o ) ) → ( 𝐺 ∈ Grp ∧ [ ∅ ] ∼ = ( 0g ‘ 𝐺 ) ) ) |
27 |
14 26
|
syl |
⊢ ( 𝐴 ∈ 𝑊 → ( 𝐺 ∈ Grp ∧ [ ∅ ] ∼ = ( 0g ‘ 𝐺 ) ) ) |
28 |
27
|
simprd |
⊢ ( 𝐴 ∈ 𝑊 → [ ∅ ] ∼ = ( 0g ‘ 𝐺 ) ) |
29 |
19 24 28
|
3eqtrd |
⊢ ( 𝐴 ∈ 𝑊 → ( [ 𝐴 ] ∼ ( +g ‘ 𝐺 ) [ ( 𝑀 ∘ ( reverse ‘ 𝐴 ) ) ] ∼ ) = ( 0g ‘ 𝐺 ) ) |
30 |
27
|
simpld |
⊢ ( 𝐴 ∈ 𝑊 → 𝐺 ∈ Grp ) |
31 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
32 |
2 3 1 31
|
frgpeccl |
⊢ ( 𝐴 ∈ 𝑊 → [ 𝐴 ] ∼ ∈ ( Base ‘ 𝐺 ) ) |
33 |
2 3 1 31
|
frgpeccl |
⊢ ( ( 𝑀 ∘ ( reverse ‘ 𝐴 ) ) ∈ 𝑊 → [ ( 𝑀 ∘ ( reverse ‘ 𝐴 ) ) ] ∼ ∈ ( Base ‘ 𝐺 ) ) |
34 |
16 33
|
syl |
⊢ ( 𝐴 ∈ 𝑊 → [ ( 𝑀 ∘ ( reverse ‘ 𝐴 ) ) ] ∼ ∈ ( Base ‘ 𝐺 ) ) |
35 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
36 |
31 17 35 4
|
grpinvid1 |
⊢ ( ( 𝐺 ∈ Grp ∧ [ 𝐴 ] ∼ ∈ ( Base ‘ 𝐺 ) ∧ [ ( 𝑀 ∘ ( reverse ‘ 𝐴 ) ) ] ∼ ∈ ( Base ‘ 𝐺 ) ) → ( ( 𝑁 ‘ [ 𝐴 ] ∼ ) = [ ( 𝑀 ∘ ( reverse ‘ 𝐴 ) ) ] ∼ ↔ ( [ 𝐴 ] ∼ ( +g ‘ 𝐺 ) [ ( 𝑀 ∘ ( reverse ‘ 𝐴 ) ) ] ∼ ) = ( 0g ‘ 𝐺 ) ) ) |
37 |
30 32 34 36
|
syl3anc |
⊢ ( 𝐴 ∈ 𝑊 → ( ( 𝑁 ‘ [ 𝐴 ] ∼ ) = [ ( 𝑀 ∘ ( reverse ‘ 𝐴 ) ) ] ∼ ↔ ( [ 𝐴 ] ∼ ( +g ‘ 𝐺 ) [ ( 𝑀 ∘ ( reverse ‘ 𝐴 ) ) ] ∼ ) = ( 0g ‘ 𝐺 ) ) ) |
38 |
29 37
|
mpbird |
⊢ ( 𝐴 ∈ 𝑊 → ( 𝑁 ‘ [ 𝐴 ] ∼ ) = [ ( 𝑀 ∘ ( reverse ‘ 𝐴 ) ) ] ∼ ) |