Step |
Hyp |
Ref |
Expression |
1 |
|
frgpmhm.m |
⊢ 𝑀 = ( freeMnd ‘ ( 𝐼 × 2o ) ) |
2 |
|
frgpmhm.w |
⊢ 𝑊 = ( Base ‘ 𝑀 ) |
3 |
|
frgpmhm.g |
⊢ 𝐺 = ( freeGrp ‘ 𝐼 ) |
4 |
|
frgpmhm.r |
⊢ ∼ = ( ~FG ‘ 𝐼 ) |
5 |
|
frgpmhm.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝑊 ↦ [ 𝑥 ] ∼ ) |
6 |
|
2on |
⊢ 2o ∈ On |
7 |
|
xpexg |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 2o ∈ On ) → ( 𝐼 × 2o ) ∈ V ) |
8 |
6 7
|
mpan2 |
⊢ ( 𝐼 ∈ 𝑉 → ( 𝐼 × 2o ) ∈ V ) |
9 |
1
|
frmdmnd |
⊢ ( ( 𝐼 × 2o ) ∈ V → 𝑀 ∈ Mnd ) |
10 |
8 9
|
syl |
⊢ ( 𝐼 ∈ 𝑉 → 𝑀 ∈ Mnd ) |
11 |
3
|
frgpgrp |
⊢ ( 𝐼 ∈ 𝑉 → 𝐺 ∈ Grp ) |
12 |
11
|
grpmndd |
⊢ ( 𝐼 ∈ 𝑉 → 𝐺 ∈ Mnd ) |
13 |
1 2
|
frmdbas |
⊢ ( ( 𝐼 × 2o ) ∈ V → 𝑊 = Word ( 𝐼 × 2o ) ) |
14 |
|
wrdexg |
⊢ ( ( 𝐼 × 2o ) ∈ V → Word ( 𝐼 × 2o ) ∈ V ) |
15 |
|
fvi |
⊢ ( Word ( 𝐼 × 2o ) ∈ V → ( I ‘ Word ( 𝐼 × 2o ) ) = Word ( 𝐼 × 2o ) ) |
16 |
14 15
|
syl |
⊢ ( ( 𝐼 × 2o ) ∈ V → ( I ‘ Word ( 𝐼 × 2o ) ) = Word ( 𝐼 × 2o ) ) |
17 |
13 16
|
eqtr4d |
⊢ ( ( 𝐼 × 2o ) ∈ V → 𝑊 = ( I ‘ Word ( 𝐼 × 2o ) ) ) |
18 |
8 17
|
syl |
⊢ ( 𝐼 ∈ 𝑉 → 𝑊 = ( I ‘ Word ( 𝐼 × 2o ) ) ) |
19 |
18
|
eleq2d |
⊢ ( 𝐼 ∈ 𝑉 → ( 𝑥 ∈ 𝑊 ↔ 𝑥 ∈ ( I ‘ Word ( 𝐼 × 2o ) ) ) ) |
20 |
19
|
biimpa |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑥 ∈ 𝑊 ) → 𝑥 ∈ ( I ‘ Word ( 𝐼 × 2o ) ) ) |
21 |
|
eqid |
⊢ ( I ‘ Word ( 𝐼 × 2o ) ) = ( I ‘ Word ( 𝐼 × 2o ) ) |
22 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
23 |
3 4 21 22
|
frgpeccl |
⊢ ( 𝑥 ∈ ( I ‘ Word ( 𝐼 × 2o ) ) → [ 𝑥 ] ∼ ∈ ( Base ‘ 𝐺 ) ) |
24 |
20 23
|
syl |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑥 ∈ 𝑊 ) → [ 𝑥 ] ∼ ∈ ( Base ‘ 𝐺 ) ) |
25 |
24 5
|
fmptd |
⊢ ( 𝐼 ∈ 𝑉 → 𝐹 : 𝑊 ⟶ ( Base ‘ 𝐺 ) ) |
26 |
21 4
|
efger |
⊢ ∼ Er ( I ‘ Word ( 𝐼 × 2o ) ) |
27 |
|
ereq2 |
⊢ ( 𝑊 = ( I ‘ Word ( 𝐼 × 2o ) ) → ( ∼ Er 𝑊 ↔ ∼ Er ( I ‘ Word ( 𝐼 × 2o ) ) ) ) |
28 |
18 27
|
syl |
⊢ ( 𝐼 ∈ 𝑉 → ( ∼ Er 𝑊 ↔ ∼ Er ( I ‘ Word ( 𝐼 × 2o ) ) ) ) |
29 |
26 28
|
mpbiri |
⊢ ( 𝐼 ∈ 𝑉 → ∼ Er 𝑊 ) |
30 |
29
|
adantr |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊 ) ) → ∼ Er 𝑊 ) |
31 |
2
|
fvexi |
⊢ 𝑊 ∈ V |
32 |
31
|
a1i |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊 ) ) → 𝑊 ∈ V ) |
33 |
30 32 5
|
divsfval |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊 ) ) → ( 𝐹 ‘ ( 𝑎 ++ 𝑏 ) ) = [ ( 𝑎 ++ 𝑏 ) ] ∼ ) |
34 |
|
eqid |
⊢ ( +g ‘ 𝑀 ) = ( +g ‘ 𝑀 ) |
35 |
1 2 34
|
frmdadd |
⊢ ( ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊 ) → ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) = ( 𝑎 ++ 𝑏 ) ) |
36 |
35
|
adantl |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊 ) ) → ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) = ( 𝑎 ++ 𝑏 ) ) |
37 |
36
|
fveq2d |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊 ) ) → ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ) = ( 𝐹 ‘ ( 𝑎 ++ 𝑏 ) ) ) |
38 |
30 32 5
|
divsfval |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊 ) ) → ( 𝐹 ‘ 𝑎 ) = [ 𝑎 ] ∼ ) |
39 |
30 32 5
|
divsfval |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊 ) ) → ( 𝐹 ‘ 𝑏 ) = [ 𝑏 ] ∼ ) |
40 |
38 39
|
oveq12d |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊 ) ) → ( ( 𝐹 ‘ 𝑎 ) ( +g ‘ 𝐺 ) ( 𝐹 ‘ 𝑏 ) ) = ( [ 𝑎 ] ∼ ( +g ‘ 𝐺 ) [ 𝑏 ] ∼ ) ) |
41 |
18
|
eleq2d |
⊢ ( 𝐼 ∈ 𝑉 → ( 𝑎 ∈ 𝑊 ↔ 𝑎 ∈ ( I ‘ Word ( 𝐼 × 2o ) ) ) ) |
42 |
18
|
eleq2d |
⊢ ( 𝐼 ∈ 𝑉 → ( 𝑏 ∈ 𝑊 ↔ 𝑏 ∈ ( I ‘ Word ( 𝐼 × 2o ) ) ) ) |
43 |
41 42
|
anbi12d |
⊢ ( 𝐼 ∈ 𝑉 → ( ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊 ) ↔ ( 𝑎 ∈ ( I ‘ Word ( 𝐼 × 2o ) ) ∧ 𝑏 ∈ ( I ‘ Word ( 𝐼 × 2o ) ) ) ) ) |
44 |
43
|
biimpa |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊 ) ) → ( 𝑎 ∈ ( I ‘ Word ( 𝐼 × 2o ) ) ∧ 𝑏 ∈ ( I ‘ Word ( 𝐼 × 2o ) ) ) ) |
45 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
46 |
21 3 4 45
|
frgpadd |
⊢ ( ( 𝑎 ∈ ( I ‘ Word ( 𝐼 × 2o ) ) ∧ 𝑏 ∈ ( I ‘ Word ( 𝐼 × 2o ) ) ) → ( [ 𝑎 ] ∼ ( +g ‘ 𝐺 ) [ 𝑏 ] ∼ ) = [ ( 𝑎 ++ 𝑏 ) ] ∼ ) |
47 |
44 46
|
syl |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊 ) ) → ( [ 𝑎 ] ∼ ( +g ‘ 𝐺 ) [ 𝑏 ] ∼ ) = [ ( 𝑎 ++ 𝑏 ) ] ∼ ) |
48 |
40 47
|
eqtrd |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊 ) ) → ( ( 𝐹 ‘ 𝑎 ) ( +g ‘ 𝐺 ) ( 𝐹 ‘ 𝑏 ) ) = [ ( 𝑎 ++ 𝑏 ) ] ∼ ) |
49 |
33 37 48
|
3eqtr4d |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊 ) ) → ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ) = ( ( 𝐹 ‘ 𝑎 ) ( +g ‘ 𝐺 ) ( 𝐹 ‘ 𝑏 ) ) ) |
50 |
49
|
ralrimivva |
⊢ ( 𝐼 ∈ 𝑉 → ∀ 𝑎 ∈ 𝑊 ∀ 𝑏 ∈ 𝑊 ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ) = ( ( 𝐹 ‘ 𝑎 ) ( +g ‘ 𝐺 ) ( 𝐹 ‘ 𝑏 ) ) ) |
51 |
31
|
a1i |
⊢ ( 𝐼 ∈ 𝑉 → 𝑊 ∈ V ) |
52 |
29 51 5
|
divsfval |
⊢ ( 𝐼 ∈ 𝑉 → ( 𝐹 ‘ ∅ ) = [ ∅ ] ∼ ) |
53 |
3 4
|
frgp0 |
⊢ ( 𝐼 ∈ 𝑉 → ( 𝐺 ∈ Grp ∧ [ ∅ ] ∼ = ( 0g ‘ 𝐺 ) ) ) |
54 |
53
|
simprd |
⊢ ( 𝐼 ∈ 𝑉 → [ ∅ ] ∼ = ( 0g ‘ 𝐺 ) ) |
55 |
52 54
|
eqtrd |
⊢ ( 𝐼 ∈ 𝑉 → ( 𝐹 ‘ ∅ ) = ( 0g ‘ 𝐺 ) ) |
56 |
25 50 55
|
3jca |
⊢ ( 𝐼 ∈ 𝑉 → ( 𝐹 : 𝑊 ⟶ ( Base ‘ 𝐺 ) ∧ ∀ 𝑎 ∈ 𝑊 ∀ 𝑏 ∈ 𝑊 ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ) = ( ( 𝐹 ‘ 𝑎 ) ( +g ‘ 𝐺 ) ( 𝐹 ‘ 𝑏 ) ) ∧ ( 𝐹 ‘ ∅ ) = ( 0g ‘ 𝐺 ) ) ) |
57 |
1
|
frmd0 |
⊢ ∅ = ( 0g ‘ 𝑀 ) |
58 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
59 |
2 22 34 45 57 58
|
ismhm |
⊢ ( 𝐹 ∈ ( 𝑀 MndHom 𝐺 ) ↔ ( ( 𝑀 ∈ Mnd ∧ 𝐺 ∈ Mnd ) ∧ ( 𝐹 : 𝑊 ⟶ ( Base ‘ 𝐺 ) ∧ ∀ 𝑎 ∈ 𝑊 ∀ 𝑏 ∈ 𝑊 ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ) = ( ( 𝐹 ‘ 𝑎 ) ( +g ‘ 𝐺 ) ( 𝐹 ‘ 𝑏 ) ) ∧ ( 𝐹 ‘ ∅ ) = ( 0g ‘ 𝐺 ) ) ) ) |
60 |
10 12 56 59
|
syl21anbrc |
⊢ ( 𝐼 ∈ 𝑉 → 𝐹 ∈ ( 𝑀 MndHom 𝐺 ) ) |