Metamath Proof Explorer


Theorem frgpmhm

Description: The "natural map" from words of the free monoid to their cosets in the free group is a surjective monoid homomorphism. (Contributed by Mario Carneiro, 2-Oct-2015)

Ref Expression
Hypotheses frgpmhm.m 𝑀 = ( freeMnd ‘ ( 𝐼 × 2o ) )
frgpmhm.w 𝑊 = ( Base ‘ 𝑀 )
frgpmhm.g 𝐺 = ( freeGrp ‘ 𝐼 )
frgpmhm.r = ( ~FG𝐼 )
frgpmhm.f 𝐹 = ( 𝑥𝑊 ↦ [ 𝑥 ] )
Assertion frgpmhm ( 𝐼𝑉𝐹 ∈ ( 𝑀 MndHom 𝐺 ) )

Proof

Step Hyp Ref Expression
1 frgpmhm.m 𝑀 = ( freeMnd ‘ ( 𝐼 × 2o ) )
2 frgpmhm.w 𝑊 = ( Base ‘ 𝑀 )
3 frgpmhm.g 𝐺 = ( freeGrp ‘ 𝐼 )
4 frgpmhm.r = ( ~FG𝐼 )
5 frgpmhm.f 𝐹 = ( 𝑥𝑊 ↦ [ 𝑥 ] )
6 2on 2o ∈ On
7 xpexg ( ( 𝐼𝑉 ∧ 2o ∈ On ) → ( 𝐼 × 2o ) ∈ V )
8 6 7 mpan2 ( 𝐼𝑉 → ( 𝐼 × 2o ) ∈ V )
9 1 frmdmnd ( ( 𝐼 × 2o ) ∈ V → 𝑀 ∈ Mnd )
10 8 9 syl ( 𝐼𝑉𝑀 ∈ Mnd )
11 3 frgpgrp ( 𝐼𝑉𝐺 ∈ Grp )
12 11 grpmndd ( 𝐼𝑉𝐺 ∈ Mnd )
13 1 2 frmdbas ( ( 𝐼 × 2o ) ∈ V → 𝑊 = Word ( 𝐼 × 2o ) )
14 wrdexg ( ( 𝐼 × 2o ) ∈ V → Word ( 𝐼 × 2o ) ∈ V )
15 fvi ( Word ( 𝐼 × 2o ) ∈ V → ( I ‘ Word ( 𝐼 × 2o ) ) = Word ( 𝐼 × 2o ) )
16 14 15 syl ( ( 𝐼 × 2o ) ∈ V → ( I ‘ Word ( 𝐼 × 2o ) ) = Word ( 𝐼 × 2o ) )
17 13 16 eqtr4d ( ( 𝐼 × 2o ) ∈ V → 𝑊 = ( I ‘ Word ( 𝐼 × 2o ) ) )
18 8 17 syl ( 𝐼𝑉𝑊 = ( I ‘ Word ( 𝐼 × 2o ) ) )
19 18 eleq2d ( 𝐼𝑉 → ( 𝑥𝑊𝑥 ∈ ( I ‘ Word ( 𝐼 × 2o ) ) ) )
20 19 biimpa ( ( 𝐼𝑉𝑥𝑊 ) → 𝑥 ∈ ( I ‘ Word ( 𝐼 × 2o ) ) )
21 eqid ( I ‘ Word ( 𝐼 × 2o ) ) = ( I ‘ Word ( 𝐼 × 2o ) )
22 eqid ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 )
23 3 4 21 22 frgpeccl ( 𝑥 ∈ ( I ‘ Word ( 𝐼 × 2o ) ) → [ 𝑥 ] ∈ ( Base ‘ 𝐺 ) )
24 20 23 syl ( ( 𝐼𝑉𝑥𝑊 ) → [ 𝑥 ] ∈ ( Base ‘ 𝐺 ) )
25 24 5 fmptd ( 𝐼𝑉𝐹 : 𝑊 ⟶ ( Base ‘ 𝐺 ) )
26 21 4 efger Er ( I ‘ Word ( 𝐼 × 2o ) )
27 ereq2 ( 𝑊 = ( I ‘ Word ( 𝐼 × 2o ) ) → ( Er 𝑊 Er ( I ‘ Word ( 𝐼 × 2o ) ) ) )
28 18 27 syl ( 𝐼𝑉 → ( Er 𝑊 Er ( I ‘ Word ( 𝐼 × 2o ) ) ) )
29 26 28 mpbiri ( 𝐼𝑉 Er 𝑊 )
30 29 adantr ( ( 𝐼𝑉 ∧ ( 𝑎𝑊𝑏𝑊 ) ) → Er 𝑊 )
31 2 fvexi 𝑊 ∈ V
32 31 a1i ( ( 𝐼𝑉 ∧ ( 𝑎𝑊𝑏𝑊 ) ) → 𝑊 ∈ V )
33 30 32 5 divsfval ( ( 𝐼𝑉 ∧ ( 𝑎𝑊𝑏𝑊 ) ) → ( 𝐹 ‘ ( 𝑎 ++ 𝑏 ) ) = [ ( 𝑎 ++ 𝑏 ) ] )
34 eqid ( +g𝑀 ) = ( +g𝑀 )
35 1 2 34 frmdadd ( ( 𝑎𝑊𝑏𝑊 ) → ( 𝑎 ( +g𝑀 ) 𝑏 ) = ( 𝑎 ++ 𝑏 ) )
36 35 adantl ( ( 𝐼𝑉 ∧ ( 𝑎𝑊𝑏𝑊 ) ) → ( 𝑎 ( +g𝑀 ) 𝑏 ) = ( 𝑎 ++ 𝑏 ) )
37 36 fveq2d ( ( 𝐼𝑉 ∧ ( 𝑎𝑊𝑏𝑊 ) ) → ( 𝐹 ‘ ( 𝑎 ( +g𝑀 ) 𝑏 ) ) = ( 𝐹 ‘ ( 𝑎 ++ 𝑏 ) ) )
38 30 32 5 divsfval ( ( 𝐼𝑉 ∧ ( 𝑎𝑊𝑏𝑊 ) ) → ( 𝐹𝑎 ) = [ 𝑎 ] )
39 30 32 5 divsfval ( ( 𝐼𝑉 ∧ ( 𝑎𝑊𝑏𝑊 ) ) → ( 𝐹𝑏 ) = [ 𝑏 ] )
40 38 39 oveq12d ( ( 𝐼𝑉 ∧ ( 𝑎𝑊𝑏𝑊 ) ) → ( ( 𝐹𝑎 ) ( +g𝐺 ) ( 𝐹𝑏 ) ) = ( [ 𝑎 ] ( +g𝐺 ) [ 𝑏 ] ) )
41 18 eleq2d ( 𝐼𝑉 → ( 𝑎𝑊𝑎 ∈ ( I ‘ Word ( 𝐼 × 2o ) ) ) )
42 18 eleq2d ( 𝐼𝑉 → ( 𝑏𝑊𝑏 ∈ ( I ‘ Word ( 𝐼 × 2o ) ) ) )
43 41 42 anbi12d ( 𝐼𝑉 → ( ( 𝑎𝑊𝑏𝑊 ) ↔ ( 𝑎 ∈ ( I ‘ Word ( 𝐼 × 2o ) ) ∧ 𝑏 ∈ ( I ‘ Word ( 𝐼 × 2o ) ) ) ) )
44 43 biimpa ( ( 𝐼𝑉 ∧ ( 𝑎𝑊𝑏𝑊 ) ) → ( 𝑎 ∈ ( I ‘ Word ( 𝐼 × 2o ) ) ∧ 𝑏 ∈ ( I ‘ Word ( 𝐼 × 2o ) ) ) )
45 eqid ( +g𝐺 ) = ( +g𝐺 )
46 21 3 4 45 frgpadd ( ( 𝑎 ∈ ( I ‘ Word ( 𝐼 × 2o ) ) ∧ 𝑏 ∈ ( I ‘ Word ( 𝐼 × 2o ) ) ) → ( [ 𝑎 ] ( +g𝐺 ) [ 𝑏 ] ) = [ ( 𝑎 ++ 𝑏 ) ] )
47 44 46 syl ( ( 𝐼𝑉 ∧ ( 𝑎𝑊𝑏𝑊 ) ) → ( [ 𝑎 ] ( +g𝐺 ) [ 𝑏 ] ) = [ ( 𝑎 ++ 𝑏 ) ] )
48 40 47 eqtrd ( ( 𝐼𝑉 ∧ ( 𝑎𝑊𝑏𝑊 ) ) → ( ( 𝐹𝑎 ) ( +g𝐺 ) ( 𝐹𝑏 ) ) = [ ( 𝑎 ++ 𝑏 ) ] )
49 33 37 48 3eqtr4d ( ( 𝐼𝑉 ∧ ( 𝑎𝑊𝑏𝑊 ) ) → ( 𝐹 ‘ ( 𝑎 ( +g𝑀 ) 𝑏 ) ) = ( ( 𝐹𝑎 ) ( +g𝐺 ) ( 𝐹𝑏 ) ) )
50 49 ralrimivva ( 𝐼𝑉 → ∀ 𝑎𝑊𝑏𝑊 ( 𝐹 ‘ ( 𝑎 ( +g𝑀 ) 𝑏 ) ) = ( ( 𝐹𝑎 ) ( +g𝐺 ) ( 𝐹𝑏 ) ) )
51 31 a1i ( 𝐼𝑉𝑊 ∈ V )
52 29 51 5 divsfval ( 𝐼𝑉 → ( 𝐹 ‘ ∅ ) = [ ∅ ] )
53 3 4 frgp0 ( 𝐼𝑉 → ( 𝐺 ∈ Grp ∧ [ ∅ ] = ( 0g𝐺 ) ) )
54 53 simprd ( 𝐼𝑉 → [ ∅ ] = ( 0g𝐺 ) )
55 52 54 eqtrd ( 𝐼𝑉 → ( 𝐹 ‘ ∅ ) = ( 0g𝐺 ) )
56 25 50 55 3jca ( 𝐼𝑉 → ( 𝐹 : 𝑊 ⟶ ( Base ‘ 𝐺 ) ∧ ∀ 𝑎𝑊𝑏𝑊 ( 𝐹 ‘ ( 𝑎 ( +g𝑀 ) 𝑏 ) ) = ( ( 𝐹𝑎 ) ( +g𝐺 ) ( 𝐹𝑏 ) ) ∧ ( 𝐹 ‘ ∅ ) = ( 0g𝐺 ) ) )
57 1 frmd0 ∅ = ( 0g𝑀 )
58 eqid ( 0g𝐺 ) = ( 0g𝐺 )
59 2 22 34 45 57 58 ismhm ( 𝐹 ∈ ( 𝑀 MndHom 𝐺 ) ↔ ( ( 𝑀 ∈ Mnd ∧ 𝐺 ∈ Mnd ) ∧ ( 𝐹 : 𝑊 ⟶ ( Base ‘ 𝐺 ) ∧ ∀ 𝑎𝑊𝑏𝑊 ( 𝐹 ‘ ( 𝑎 ( +g𝑀 ) 𝑏 ) ) = ( ( 𝐹𝑎 ) ( +g𝐺 ) ( 𝐹𝑏 ) ) ∧ ( 𝐹 ‘ ∅ ) = ( 0g𝐺 ) ) ) )
60 10 12 56 59 syl21anbrc ( 𝐼𝑉𝐹 ∈ ( 𝑀 MndHom 𝐺 ) )