Step |
Hyp |
Ref |
Expression |
1 |
|
frgpup.b |
⊢ 𝐵 = ( Base ‘ 𝐻 ) |
2 |
|
frgpup.n |
⊢ 𝑁 = ( invg ‘ 𝐻 ) |
3 |
|
frgpup.t |
⊢ 𝑇 = ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ if ( 𝑧 = ∅ , ( 𝐹 ‘ 𝑦 ) , ( 𝑁 ‘ ( 𝐹 ‘ 𝑦 ) ) ) ) |
4 |
|
frgpup.h |
⊢ ( 𝜑 → 𝐻 ∈ Grp ) |
5 |
|
frgpup.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
6 |
|
frgpup.a |
⊢ ( 𝜑 → 𝐹 : 𝐼 ⟶ 𝐵 ) |
7 |
|
frgpup.w |
⊢ 𝑊 = ( I ‘ Word ( 𝐼 × 2o ) ) |
8 |
|
frgpup.r |
⊢ ∼ = ( ~FG ‘ 𝐼 ) |
9 |
|
frgpup.g |
⊢ 𝐺 = ( freeGrp ‘ 𝐼 ) |
10 |
|
frgpup.x |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
11 |
|
frgpup.e |
⊢ 𝐸 = ran ( 𝑔 ∈ 𝑊 ↦ 〈 [ 𝑔 ] ∼ , ( 𝐻 Σg ( 𝑇 ∘ 𝑔 ) ) 〉 ) |
12 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
13 |
|
eqid |
⊢ ( +g ‘ 𝐻 ) = ( +g ‘ 𝐻 ) |
14 |
9
|
frgpgrp |
⊢ ( 𝐼 ∈ 𝑉 → 𝐺 ∈ Grp ) |
15 |
5 14
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
16 |
1 2 3 4 5 6 7 8 9 10 11
|
frgpupf |
⊢ ( 𝜑 → 𝐸 : 𝑋 ⟶ 𝐵 ) |
17 |
|
eqid |
⊢ ( freeMnd ‘ ( 𝐼 × 2o ) ) = ( freeMnd ‘ ( 𝐼 × 2o ) ) |
18 |
9 17 8
|
frgpval |
⊢ ( 𝐼 ∈ 𝑉 → 𝐺 = ( ( freeMnd ‘ ( 𝐼 × 2o ) ) /s ∼ ) ) |
19 |
5 18
|
syl |
⊢ ( 𝜑 → 𝐺 = ( ( freeMnd ‘ ( 𝐼 × 2o ) ) /s ∼ ) ) |
20 |
|
2on |
⊢ 2o ∈ On |
21 |
|
xpexg |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 2o ∈ On ) → ( 𝐼 × 2o ) ∈ V ) |
22 |
5 20 21
|
sylancl |
⊢ ( 𝜑 → ( 𝐼 × 2o ) ∈ V ) |
23 |
|
wrdexg |
⊢ ( ( 𝐼 × 2o ) ∈ V → Word ( 𝐼 × 2o ) ∈ V ) |
24 |
|
fvi |
⊢ ( Word ( 𝐼 × 2o ) ∈ V → ( I ‘ Word ( 𝐼 × 2o ) ) = Word ( 𝐼 × 2o ) ) |
25 |
22 23 24
|
3syl |
⊢ ( 𝜑 → ( I ‘ Word ( 𝐼 × 2o ) ) = Word ( 𝐼 × 2o ) ) |
26 |
7 25
|
eqtrid |
⊢ ( 𝜑 → 𝑊 = Word ( 𝐼 × 2o ) ) |
27 |
|
eqid |
⊢ ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) = ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) |
28 |
17 27
|
frmdbas |
⊢ ( ( 𝐼 × 2o ) ∈ V → ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) = Word ( 𝐼 × 2o ) ) |
29 |
22 28
|
syl |
⊢ ( 𝜑 → ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) = Word ( 𝐼 × 2o ) ) |
30 |
26 29
|
eqtr4d |
⊢ ( 𝜑 → 𝑊 = ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) ) |
31 |
8
|
fvexi |
⊢ ∼ ∈ V |
32 |
31
|
a1i |
⊢ ( 𝜑 → ∼ ∈ V ) |
33 |
|
fvexd |
⊢ ( 𝜑 → ( freeMnd ‘ ( 𝐼 × 2o ) ) ∈ V ) |
34 |
19 30 32 33
|
qusbas |
⊢ ( 𝜑 → ( 𝑊 / ∼ ) = ( Base ‘ 𝐺 ) ) |
35 |
10 34
|
eqtr4id |
⊢ ( 𝜑 → 𝑋 = ( 𝑊 / ∼ ) ) |
36 |
|
eqimss |
⊢ ( 𝑋 = ( 𝑊 / ∼ ) → 𝑋 ⊆ ( 𝑊 / ∼ ) ) |
37 |
35 36
|
syl |
⊢ ( 𝜑 → 𝑋 ⊆ ( 𝑊 / ∼ ) ) |
38 |
37
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑋 ) → 𝑋 ⊆ ( 𝑊 / ∼ ) ) |
39 |
38
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑋 ) ∧ 𝑐 ∈ 𝑋 ) → 𝑐 ∈ ( 𝑊 / ∼ ) ) |
40 |
|
eqid |
⊢ ( 𝑊 / ∼ ) = ( 𝑊 / ∼ ) |
41 |
|
oveq2 |
⊢ ( [ 𝑢 ] ∼ = 𝑐 → ( 𝑎 ( +g ‘ 𝐺 ) [ 𝑢 ] ∼ ) = ( 𝑎 ( +g ‘ 𝐺 ) 𝑐 ) ) |
42 |
41
|
fveq2d |
⊢ ( [ 𝑢 ] ∼ = 𝑐 → ( 𝐸 ‘ ( 𝑎 ( +g ‘ 𝐺 ) [ 𝑢 ] ∼ ) ) = ( 𝐸 ‘ ( 𝑎 ( +g ‘ 𝐺 ) 𝑐 ) ) ) |
43 |
|
fveq2 |
⊢ ( [ 𝑢 ] ∼ = 𝑐 → ( 𝐸 ‘ [ 𝑢 ] ∼ ) = ( 𝐸 ‘ 𝑐 ) ) |
44 |
43
|
oveq2d |
⊢ ( [ 𝑢 ] ∼ = 𝑐 → ( ( 𝐸 ‘ 𝑎 ) ( +g ‘ 𝐻 ) ( 𝐸 ‘ [ 𝑢 ] ∼ ) ) = ( ( 𝐸 ‘ 𝑎 ) ( +g ‘ 𝐻 ) ( 𝐸 ‘ 𝑐 ) ) ) |
45 |
42 44
|
eqeq12d |
⊢ ( [ 𝑢 ] ∼ = 𝑐 → ( ( 𝐸 ‘ ( 𝑎 ( +g ‘ 𝐺 ) [ 𝑢 ] ∼ ) ) = ( ( 𝐸 ‘ 𝑎 ) ( +g ‘ 𝐻 ) ( 𝐸 ‘ [ 𝑢 ] ∼ ) ) ↔ ( 𝐸 ‘ ( 𝑎 ( +g ‘ 𝐺 ) 𝑐 ) ) = ( ( 𝐸 ‘ 𝑎 ) ( +g ‘ 𝐻 ) ( 𝐸 ‘ 𝑐 ) ) ) ) |
46 |
37
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑋 ) → 𝑎 ∈ ( 𝑊 / ∼ ) ) |
47 |
46
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑊 ) ∧ 𝑎 ∈ 𝑋 ) → 𝑎 ∈ ( 𝑊 / ∼ ) ) |
48 |
|
fvoveq1 |
⊢ ( [ 𝑡 ] ∼ = 𝑎 → ( 𝐸 ‘ ( [ 𝑡 ] ∼ ( +g ‘ 𝐺 ) [ 𝑢 ] ∼ ) ) = ( 𝐸 ‘ ( 𝑎 ( +g ‘ 𝐺 ) [ 𝑢 ] ∼ ) ) ) |
49 |
|
fveq2 |
⊢ ( [ 𝑡 ] ∼ = 𝑎 → ( 𝐸 ‘ [ 𝑡 ] ∼ ) = ( 𝐸 ‘ 𝑎 ) ) |
50 |
49
|
oveq1d |
⊢ ( [ 𝑡 ] ∼ = 𝑎 → ( ( 𝐸 ‘ [ 𝑡 ] ∼ ) ( +g ‘ 𝐻 ) ( 𝐸 ‘ [ 𝑢 ] ∼ ) ) = ( ( 𝐸 ‘ 𝑎 ) ( +g ‘ 𝐻 ) ( 𝐸 ‘ [ 𝑢 ] ∼ ) ) ) |
51 |
48 50
|
eqeq12d |
⊢ ( [ 𝑡 ] ∼ = 𝑎 → ( ( 𝐸 ‘ ( [ 𝑡 ] ∼ ( +g ‘ 𝐺 ) [ 𝑢 ] ∼ ) ) = ( ( 𝐸 ‘ [ 𝑡 ] ∼ ) ( +g ‘ 𝐻 ) ( 𝐸 ‘ [ 𝑢 ] ∼ ) ) ↔ ( 𝐸 ‘ ( 𝑎 ( +g ‘ 𝐺 ) [ 𝑢 ] ∼ ) ) = ( ( 𝐸 ‘ 𝑎 ) ( +g ‘ 𝐻 ) ( 𝐸 ‘ [ 𝑢 ] ∼ ) ) ) ) |
52 |
|
fviss |
⊢ ( I ‘ Word ( 𝐼 × 2o ) ) ⊆ Word ( 𝐼 × 2o ) |
53 |
7 52
|
eqsstri |
⊢ 𝑊 ⊆ Word ( 𝐼 × 2o ) |
54 |
53
|
sseli |
⊢ ( 𝑡 ∈ 𝑊 → 𝑡 ∈ Word ( 𝐼 × 2o ) ) |
55 |
53
|
sseli |
⊢ ( 𝑢 ∈ 𝑊 → 𝑢 ∈ Word ( 𝐼 × 2o ) ) |
56 |
|
ccatcl |
⊢ ( ( 𝑡 ∈ Word ( 𝐼 × 2o ) ∧ 𝑢 ∈ Word ( 𝐼 × 2o ) ) → ( 𝑡 ++ 𝑢 ) ∈ Word ( 𝐼 × 2o ) ) |
57 |
54 55 56
|
syl2an |
⊢ ( ( 𝑡 ∈ 𝑊 ∧ 𝑢 ∈ 𝑊 ) → ( 𝑡 ++ 𝑢 ) ∈ Word ( 𝐼 × 2o ) ) |
58 |
7
|
efgrcl |
⊢ ( 𝑡 ∈ 𝑊 → ( 𝐼 ∈ V ∧ 𝑊 = Word ( 𝐼 × 2o ) ) ) |
59 |
58
|
adantr |
⊢ ( ( 𝑡 ∈ 𝑊 ∧ 𝑢 ∈ 𝑊 ) → ( 𝐼 ∈ V ∧ 𝑊 = Word ( 𝐼 × 2o ) ) ) |
60 |
59
|
simprd |
⊢ ( ( 𝑡 ∈ 𝑊 ∧ 𝑢 ∈ 𝑊 ) → 𝑊 = Word ( 𝐼 × 2o ) ) |
61 |
57 60
|
eleqtrrd |
⊢ ( ( 𝑡 ∈ 𝑊 ∧ 𝑢 ∈ 𝑊 ) → ( 𝑡 ++ 𝑢 ) ∈ 𝑊 ) |
62 |
1 2 3 4 5 6 7 8 9 10 11
|
frgpupval |
⊢ ( ( 𝜑 ∧ ( 𝑡 ++ 𝑢 ) ∈ 𝑊 ) → ( 𝐸 ‘ [ ( 𝑡 ++ 𝑢 ) ] ∼ ) = ( 𝐻 Σg ( 𝑇 ∘ ( 𝑡 ++ 𝑢 ) ) ) ) |
63 |
61 62
|
sylan2 |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑊 ∧ 𝑢 ∈ 𝑊 ) ) → ( 𝐸 ‘ [ ( 𝑡 ++ 𝑢 ) ] ∼ ) = ( 𝐻 Σg ( 𝑇 ∘ ( 𝑡 ++ 𝑢 ) ) ) ) |
64 |
54
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑊 ∧ 𝑢 ∈ 𝑊 ) ) → 𝑡 ∈ Word ( 𝐼 × 2o ) ) |
65 |
55
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑊 ∧ 𝑢 ∈ 𝑊 ) ) → 𝑢 ∈ Word ( 𝐼 × 2o ) ) |
66 |
1 2 3 4 5 6
|
frgpuptf |
⊢ ( 𝜑 → 𝑇 : ( 𝐼 × 2o ) ⟶ 𝐵 ) |
67 |
66
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑊 ∧ 𝑢 ∈ 𝑊 ) ) → 𝑇 : ( 𝐼 × 2o ) ⟶ 𝐵 ) |
68 |
|
ccatco |
⊢ ( ( 𝑡 ∈ Word ( 𝐼 × 2o ) ∧ 𝑢 ∈ Word ( 𝐼 × 2o ) ∧ 𝑇 : ( 𝐼 × 2o ) ⟶ 𝐵 ) → ( 𝑇 ∘ ( 𝑡 ++ 𝑢 ) ) = ( ( 𝑇 ∘ 𝑡 ) ++ ( 𝑇 ∘ 𝑢 ) ) ) |
69 |
64 65 67 68
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑊 ∧ 𝑢 ∈ 𝑊 ) ) → ( 𝑇 ∘ ( 𝑡 ++ 𝑢 ) ) = ( ( 𝑇 ∘ 𝑡 ) ++ ( 𝑇 ∘ 𝑢 ) ) ) |
70 |
69
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑊 ∧ 𝑢 ∈ 𝑊 ) ) → ( 𝐻 Σg ( 𝑇 ∘ ( 𝑡 ++ 𝑢 ) ) ) = ( 𝐻 Σg ( ( 𝑇 ∘ 𝑡 ) ++ ( 𝑇 ∘ 𝑢 ) ) ) ) |
71 |
4
|
grpmndd |
⊢ ( 𝜑 → 𝐻 ∈ Mnd ) |
72 |
71
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑊 ∧ 𝑢 ∈ 𝑊 ) ) → 𝐻 ∈ Mnd ) |
73 |
|
wrdco |
⊢ ( ( 𝑡 ∈ Word ( 𝐼 × 2o ) ∧ 𝑇 : ( 𝐼 × 2o ) ⟶ 𝐵 ) → ( 𝑇 ∘ 𝑡 ) ∈ Word 𝐵 ) |
74 |
54 66 73
|
syl2anr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑊 ) → ( 𝑇 ∘ 𝑡 ) ∈ Word 𝐵 ) |
75 |
74
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑊 ∧ 𝑢 ∈ 𝑊 ) ) → ( 𝑇 ∘ 𝑡 ) ∈ Word 𝐵 ) |
76 |
|
wrdco |
⊢ ( ( 𝑢 ∈ Word ( 𝐼 × 2o ) ∧ 𝑇 : ( 𝐼 × 2o ) ⟶ 𝐵 ) → ( 𝑇 ∘ 𝑢 ) ∈ Word 𝐵 ) |
77 |
65 67 76
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑊 ∧ 𝑢 ∈ 𝑊 ) ) → ( 𝑇 ∘ 𝑢 ) ∈ Word 𝐵 ) |
78 |
1 13
|
gsumccat |
⊢ ( ( 𝐻 ∈ Mnd ∧ ( 𝑇 ∘ 𝑡 ) ∈ Word 𝐵 ∧ ( 𝑇 ∘ 𝑢 ) ∈ Word 𝐵 ) → ( 𝐻 Σg ( ( 𝑇 ∘ 𝑡 ) ++ ( 𝑇 ∘ 𝑢 ) ) ) = ( ( 𝐻 Σg ( 𝑇 ∘ 𝑡 ) ) ( +g ‘ 𝐻 ) ( 𝐻 Σg ( 𝑇 ∘ 𝑢 ) ) ) ) |
79 |
72 75 77 78
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑊 ∧ 𝑢 ∈ 𝑊 ) ) → ( 𝐻 Σg ( ( 𝑇 ∘ 𝑡 ) ++ ( 𝑇 ∘ 𝑢 ) ) ) = ( ( 𝐻 Σg ( 𝑇 ∘ 𝑡 ) ) ( +g ‘ 𝐻 ) ( 𝐻 Σg ( 𝑇 ∘ 𝑢 ) ) ) ) |
80 |
63 70 79
|
3eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑊 ∧ 𝑢 ∈ 𝑊 ) ) → ( 𝐸 ‘ [ ( 𝑡 ++ 𝑢 ) ] ∼ ) = ( ( 𝐻 Σg ( 𝑇 ∘ 𝑡 ) ) ( +g ‘ 𝐻 ) ( 𝐻 Σg ( 𝑇 ∘ 𝑢 ) ) ) ) |
81 |
7 9 8 12
|
frgpadd |
⊢ ( ( 𝑡 ∈ 𝑊 ∧ 𝑢 ∈ 𝑊 ) → ( [ 𝑡 ] ∼ ( +g ‘ 𝐺 ) [ 𝑢 ] ∼ ) = [ ( 𝑡 ++ 𝑢 ) ] ∼ ) |
82 |
81
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑊 ∧ 𝑢 ∈ 𝑊 ) ) → ( [ 𝑡 ] ∼ ( +g ‘ 𝐺 ) [ 𝑢 ] ∼ ) = [ ( 𝑡 ++ 𝑢 ) ] ∼ ) |
83 |
82
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑊 ∧ 𝑢 ∈ 𝑊 ) ) → ( 𝐸 ‘ ( [ 𝑡 ] ∼ ( +g ‘ 𝐺 ) [ 𝑢 ] ∼ ) ) = ( 𝐸 ‘ [ ( 𝑡 ++ 𝑢 ) ] ∼ ) ) |
84 |
1 2 3 4 5 6 7 8 9 10 11
|
frgpupval |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑊 ) → ( 𝐸 ‘ [ 𝑡 ] ∼ ) = ( 𝐻 Σg ( 𝑇 ∘ 𝑡 ) ) ) |
85 |
84
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑊 ∧ 𝑢 ∈ 𝑊 ) ) → ( 𝐸 ‘ [ 𝑡 ] ∼ ) = ( 𝐻 Σg ( 𝑇 ∘ 𝑡 ) ) ) |
86 |
1 2 3 4 5 6 7 8 9 10 11
|
frgpupval |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑊 ) → ( 𝐸 ‘ [ 𝑢 ] ∼ ) = ( 𝐻 Σg ( 𝑇 ∘ 𝑢 ) ) ) |
87 |
86
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑊 ∧ 𝑢 ∈ 𝑊 ) ) → ( 𝐸 ‘ [ 𝑢 ] ∼ ) = ( 𝐻 Σg ( 𝑇 ∘ 𝑢 ) ) ) |
88 |
85 87
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑊 ∧ 𝑢 ∈ 𝑊 ) ) → ( ( 𝐸 ‘ [ 𝑡 ] ∼ ) ( +g ‘ 𝐻 ) ( 𝐸 ‘ [ 𝑢 ] ∼ ) ) = ( ( 𝐻 Σg ( 𝑇 ∘ 𝑡 ) ) ( +g ‘ 𝐻 ) ( 𝐻 Σg ( 𝑇 ∘ 𝑢 ) ) ) ) |
89 |
80 83 88
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑊 ∧ 𝑢 ∈ 𝑊 ) ) → ( 𝐸 ‘ ( [ 𝑡 ] ∼ ( +g ‘ 𝐺 ) [ 𝑢 ] ∼ ) ) = ( ( 𝐸 ‘ [ 𝑡 ] ∼ ) ( +g ‘ 𝐻 ) ( 𝐸 ‘ [ 𝑢 ] ∼ ) ) ) |
90 |
89
|
anass1rs |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑊 ) ∧ 𝑡 ∈ 𝑊 ) → ( 𝐸 ‘ ( [ 𝑡 ] ∼ ( +g ‘ 𝐺 ) [ 𝑢 ] ∼ ) ) = ( ( 𝐸 ‘ [ 𝑡 ] ∼ ) ( +g ‘ 𝐻 ) ( 𝐸 ‘ [ 𝑢 ] ∼ ) ) ) |
91 |
40 51 90
|
ectocld |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑊 ) ∧ 𝑎 ∈ ( 𝑊 / ∼ ) ) → ( 𝐸 ‘ ( 𝑎 ( +g ‘ 𝐺 ) [ 𝑢 ] ∼ ) ) = ( ( 𝐸 ‘ 𝑎 ) ( +g ‘ 𝐻 ) ( 𝐸 ‘ [ 𝑢 ] ∼ ) ) ) |
92 |
47 91
|
syldan |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑊 ) ∧ 𝑎 ∈ 𝑋 ) → ( 𝐸 ‘ ( 𝑎 ( +g ‘ 𝐺 ) [ 𝑢 ] ∼ ) ) = ( ( 𝐸 ‘ 𝑎 ) ( +g ‘ 𝐻 ) ( 𝐸 ‘ [ 𝑢 ] ∼ ) ) ) |
93 |
92
|
an32s |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑋 ) ∧ 𝑢 ∈ 𝑊 ) → ( 𝐸 ‘ ( 𝑎 ( +g ‘ 𝐺 ) [ 𝑢 ] ∼ ) ) = ( ( 𝐸 ‘ 𝑎 ) ( +g ‘ 𝐻 ) ( 𝐸 ‘ [ 𝑢 ] ∼ ) ) ) |
94 |
40 45 93
|
ectocld |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑋 ) ∧ 𝑐 ∈ ( 𝑊 / ∼ ) ) → ( 𝐸 ‘ ( 𝑎 ( +g ‘ 𝐺 ) 𝑐 ) ) = ( ( 𝐸 ‘ 𝑎 ) ( +g ‘ 𝐻 ) ( 𝐸 ‘ 𝑐 ) ) ) |
95 |
39 94
|
syldan |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑋 ) ∧ 𝑐 ∈ 𝑋 ) → ( 𝐸 ‘ ( 𝑎 ( +g ‘ 𝐺 ) 𝑐 ) ) = ( ( 𝐸 ‘ 𝑎 ) ( +g ‘ 𝐻 ) ( 𝐸 ‘ 𝑐 ) ) ) |
96 |
95
|
anasss |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) → ( 𝐸 ‘ ( 𝑎 ( +g ‘ 𝐺 ) 𝑐 ) ) = ( ( 𝐸 ‘ 𝑎 ) ( +g ‘ 𝐻 ) ( 𝐸 ‘ 𝑐 ) ) ) |
97 |
10 1 12 13 15 4 16 96
|
isghmd |
⊢ ( 𝜑 → 𝐸 ∈ ( 𝐺 GrpHom 𝐻 ) ) |