| Step |
Hyp |
Ref |
Expression |
| 1 |
|
frgpup.b |
⊢ 𝐵 = ( Base ‘ 𝐻 ) |
| 2 |
|
frgpup.n |
⊢ 𝑁 = ( invg ‘ 𝐻 ) |
| 3 |
|
frgpup.t |
⊢ 𝑇 = ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ if ( 𝑧 = ∅ , ( 𝐹 ‘ 𝑦 ) , ( 𝑁 ‘ ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 4 |
|
frgpup.h |
⊢ ( 𝜑 → 𝐻 ∈ Grp ) |
| 5 |
|
frgpup.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
| 6 |
|
frgpup.a |
⊢ ( 𝜑 → 𝐹 : 𝐼 ⟶ 𝐵 ) |
| 7 |
|
frgpup.w |
⊢ 𝑊 = ( I ‘ Word ( 𝐼 × 2o ) ) |
| 8 |
|
frgpup.r |
⊢ ∼ = ( ~FG ‘ 𝐼 ) |
| 9 |
|
frgpup.g |
⊢ 𝐺 = ( freeGrp ‘ 𝐼 ) |
| 10 |
|
frgpup.x |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
| 11 |
|
frgpup.e |
⊢ 𝐸 = ran ( 𝑔 ∈ 𝑊 ↦ 〈 [ 𝑔 ] ∼ , ( 𝐻 Σg ( 𝑇 ∘ 𝑔 ) ) 〉 ) |
| 12 |
|
frgpup.u |
⊢ 𝑈 = ( varFGrp ‘ 𝐼 ) |
| 13 |
|
frgpup3.k |
⊢ ( 𝜑 → 𝐾 ∈ ( 𝐺 GrpHom 𝐻 ) ) |
| 14 |
|
frgpup3.e |
⊢ ( 𝜑 → ( 𝐾 ∘ 𝑈 ) = 𝐹 ) |
| 15 |
10 1
|
ghmf |
⊢ ( 𝐾 ∈ ( 𝐺 GrpHom 𝐻 ) → 𝐾 : 𝑋 ⟶ 𝐵 ) |
| 16 |
|
ffn |
⊢ ( 𝐾 : 𝑋 ⟶ 𝐵 → 𝐾 Fn 𝑋 ) |
| 17 |
13 15 16
|
3syl |
⊢ ( 𝜑 → 𝐾 Fn 𝑋 ) |
| 18 |
1 2 3 4 5 6 7 8 9 10 11
|
frgpup1 |
⊢ ( 𝜑 → 𝐸 ∈ ( 𝐺 GrpHom 𝐻 ) ) |
| 19 |
10 1
|
ghmf |
⊢ ( 𝐸 ∈ ( 𝐺 GrpHom 𝐻 ) → 𝐸 : 𝑋 ⟶ 𝐵 ) |
| 20 |
|
ffn |
⊢ ( 𝐸 : 𝑋 ⟶ 𝐵 → 𝐸 Fn 𝑋 ) |
| 21 |
18 19 20
|
3syl |
⊢ ( 𝜑 → 𝐸 Fn 𝑋 ) |
| 22 |
|
eqid |
⊢ ( freeMnd ‘ ( 𝐼 × 2o ) ) = ( freeMnd ‘ ( 𝐼 × 2o ) ) |
| 23 |
9 22 8
|
frgpval |
⊢ ( 𝐼 ∈ 𝑉 → 𝐺 = ( ( freeMnd ‘ ( 𝐼 × 2o ) ) /s ∼ ) ) |
| 24 |
5 23
|
syl |
⊢ ( 𝜑 → 𝐺 = ( ( freeMnd ‘ ( 𝐼 × 2o ) ) /s ∼ ) ) |
| 25 |
|
2on |
⊢ 2o ∈ On |
| 26 |
|
xpexg |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 2o ∈ On ) → ( 𝐼 × 2o ) ∈ V ) |
| 27 |
5 25 26
|
sylancl |
⊢ ( 𝜑 → ( 𝐼 × 2o ) ∈ V ) |
| 28 |
|
wrdexg |
⊢ ( ( 𝐼 × 2o ) ∈ V → Word ( 𝐼 × 2o ) ∈ V ) |
| 29 |
|
fvi |
⊢ ( Word ( 𝐼 × 2o ) ∈ V → ( I ‘ Word ( 𝐼 × 2o ) ) = Word ( 𝐼 × 2o ) ) |
| 30 |
27 28 29
|
3syl |
⊢ ( 𝜑 → ( I ‘ Word ( 𝐼 × 2o ) ) = Word ( 𝐼 × 2o ) ) |
| 31 |
7 30
|
eqtrid |
⊢ ( 𝜑 → 𝑊 = Word ( 𝐼 × 2o ) ) |
| 32 |
|
eqid |
⊢ ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) = ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) |
| 33 |
22 32
|
frmdbas |
⊢ ( ( 𝐼 × 2o ) ∈ V → ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) = Word ( 𝐼 × 2o ) ) |
| 34 |
27 33
|
syl |
⊢ ( 𝜑 → ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) = Word ( 𝐼 × 2o ) ) |
| 35 |
31 34
|
eqtr4d |
⊢ ( 𝜑 → 𝑊 = ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) ) |
| 36 |
8
|
fvexi |
⊢ ∼ ∈ V |
| 37 |
36
|
a1i |
⊢ ( 𝜑 → ∼ ∈ V ) |
| 38 |
|
fvexd |
⊢ ( 𝜑 → ( freeMnd ‘ ( 𝐼 × 2o ) ) ∈ V ) |
| 39 |
24 35 37 38
|
qusbas |
⊢ ( 𝜑 → ( 𝑊 / ∼ ) = ( Base ‘ 𝐺 ) ) |
| 40 |
10 39
|
eqtr4id |
⊢ ( 𝜑 → 𝑋 = ( 𝑊 / ∼ ) ) |
| 41 |
|
eqimss |
⊢ ( 𝑋 = ( 𝑊 / ∼ ) → 𝑋 ⊆ ( 𝑊 / ∼ ) ) |
| 42 |
40 41
|
syl |
⊢ ( 𝜑 → 𝑋 ⊆ ( 𝑊 / ∼ ) ) |
| 43 |
42
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑋 ) → 𝑎 ∈ ( 𝑊 / ∼ ) ) |
| 44 |
|
eqid |
⊢ ( 𝑊 / ∼ ) = ( 𝑊 / ∼ ) |
| 45 |
|
fveq2 |
⊢ ( [ 𝑡 ] ∼ = 𝑎 → ( 𝐾 ‘ [ 𝑡 ] ∼ ) = ( 𝐾 ‘ 𝑎 ) ) |
| 46 |
|
fveq2 |
⊢ ( [ 𝑡 ] ∼ = 𝑎 → ( 𝐸 ‘ [ 𝑡 ] ∼ ) = ( 𝐸 ‘ 𝑎 ) ) |
| 47 |
45 46
|
eqeq12d |
⊢ ( [ 𝑡 ] ∼ = 𝑎 → ( ( 𝐾 ‘ [ 𝑡 ] ∼ ) = ( 𝐸 ‘ [ 𝑡 ] ∼ ) ↔ ( 𝐾 ‘ 𝑎 ) = ( 𝐸 ‘ 𝑎 ) ) ) |
| 48 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑊 ) → 𝑡 ∈ 𝑊 ) |
| 49 |
31
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑊 ) → 𝑊 = Word ( 𝐼 × 2o ) ) |
| 50 |
48 49
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑊 ) → 𝑡 ∈ Word ( 𝐼 × 2o ) ) |
| 51 |
|
wrdf |
⊢ ( 𝑡 ∈ Word ( 𝐼 × 2o ) → 𝑡 : ( 0 ..^ ( ♯ ‘ 𝑡 ) ) ⟶ ( 𝐼 × 2o ) ) |
| 52 |
50 51
|
syl |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑊 ) → 𝑡 : ( 0 ..^ ( ♯ ‘ 𝑡 ) ) ⟶ ( 𝐼 × 2o ) ) |
| 53 |
52
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑊 ) ∧ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑡 ) ) ) → ( 𝑡 ‘ 𝑛 ) ∈ ( 𝐼 × 2o ) ) |
| 54 |
|
elxp2 |
⊢ ( ( 𝑡 ‘ 𝑛 ) ∈ ( 𝐼 × 2o ) ↔ ∃ 𝑖 ∈ 𝐼 ∃ 𝑗 ∈ 2o ( 𝑡 ‘ 𝑛 ) = 〈 𝑖 , 𝑗 〉 ) |
| 55 |
53 54
|
sylib |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑊 ) ∧ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑡 ) ) ) → ∃ 𝑖 ∈ 𝐼 ∃ 𝑗 ∈ 2o ( 𝑡 ‘ 𝑛 ) = 〈 𝑖 , 𝑗 〉 ) |
| 56 |
|
fveq2 |
⊢ ( 𝑦 = 𝑖 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑖 ) ) |
| 57 |
56
|
fveq2d |
⊢ ( 𝑦 = 𝑖 → ( 𝑁 ‘ ( 𝐹 ‘ 𝑦 ) ) = ( 𝑁 ‘ ( 𝐹 ‘ 𝑖 ) ) ) |
| 58 |
56 57
|
ifeq12d |
⊢ ( 𝑦 = 𝑖 → if ( 𝑧 = ∅ , ( 𝐹 ‘ 𝑦 ) , ( 𝑁 ‘ ( 𝐹 ‘ 𝑦 ) ) ) = if ( 𝑧 = ∅ , ( 𝐹 ‘ 𝑖 ) , ( 𝑁 ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) |
| 59 |
|
eqeq1 |
⊢ ( 𝑧 = 𝑗 → ( 𝑧 = ∅ ↔ 𝑗 = ∅ ) ) |
| 60 |
59
|
ifbid |
⊢ ( 𝑧 = 𝑗 → if ( 𝑧 = ∅ , ( 𝐹 ‘ 𝑖 ) , ( 𝑁 ‘ ( 𝐹 ‘ 𝑖 ) ) ) = if ( 𝑗 = ∅ , ( 𝐹 ‘ 𝑖 ) , ( 𝑁 ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) |
| 61 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑖 ) ∈ V |
| 62 |
|
fvex |
⊢ ( 𝑁 ‘ ( 𝐹 ‘ 𝑖 ) ) ∈ V |
| 63 |
61 62
|
ifex |
⊢ if ( 𝑗 = ∅ , ( 𝐹 ‘ 𝑖 ) , ( 𝑁 ‘ ( 𝐹 ‘ 𝑖 ) ) ) ∈ V |
| 64 |
58 60 3 63
|
ovmpo |
⊢ ( ( 𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 2o ) → ( 𝑖 𝑇 𝑗 ) = if ( 𝑗 = ∅ , ( 𝐹 ‘ 𝑖 ) , ( 𝑁 ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) |
| 65 |
64
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 2o ) ) → ( 𝑖 𝑇 𝑗 ) = if ( 𝑗 = ∅ , ( 𝐹 ‘ 𝑖 ) , ( 𝑁 ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) |
| 66 |
|
elpri |
⊢ ( 𝑗 ∈ { ∅ , 1o } → ( 𝑗 = ∅ ∨ 𝑗 = 1o ) ) |
| 67 |
|
df2o3 |
⊢ 2o = { ∅ , 1o } |
| 68 |
66 67
|
eleq2s |
⊢ ( 𝑗 ∈ 2o → ( 𝑗 = ∅ ∨ 𝑗 = 1o ) ) |
| 69 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) → ( 𝐾 ∘ 𝑈 ) = 𝐹 ) |
| 70 |
69
|
fveq1d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) → ( ( 𝐾 ∘ 𝑈 ) ‘ 𝑖 ) = ( 𝐹 ‘ 𝑖 ) ) |
| 71 |
8 12 9 10
|
vrgpf |
⊢ ( 𝐼 ∈ 𝑉 → 𝑈 : 𝐼 ⟶ 𝑋 ) |
| 72 |
5 71
|
syl |
⊢ ( 𝜑 → 𝑈 : 𝐼 ⟶ 𝑋 ) |
| 73 |
|
fvco3 |
⊢ ( ( 𝑈 : 𝐼 ⟶ 𝑋 ∧ 𝑖 ∈ 𝐼 ) → ( ( 𝐾 ∘ 𝑈 ) ‘ 𝑖 ) = ( 𝐾 ‘ ( 𝑈 ‘ 𝑖 ) ) ) |
| 74 |
72 73
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) → ( ( 𝐾 ∘ 𝑈 ) ‘ 𝑖 ) = ( 𝐾 ‘ ( 𝑈 ‘ 𝑖 ) ) ) |
| 75 |
70 74
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) → ( 𝐹 ‘ 𝑖 ) = ( 𝐾 ‘ ( 𝑈 ‘ 𝑖 ) ) ) |
| 76 |
75
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑗 = ∅ ) → ( 𝐹 ‘ 𝑖 ) = ( 𝐾 ‘ ( 𝑈 ‘ 𝑖 ) ) ) |
| 77 |
|
iftrue |
⊢ ( 𝑗 = ∅ → if ( 𝑗 = ∅ , ( 𝐹 ‘ 𝑖 ) , ( 𝑁 ‘ ( 𝐹 ‘ 𝑖 ) ) ) = ( 𝐹 ‘ 𝑖 ) ) |
| 78 |
77
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑗 = ∅ ) → if ( 𝑗 = ∅ , ( 𝐹 ‘ 𝑖 ) , ( 𝑁 ‘ ( 𝐹 ‘ 𝑖 ) ) ) = ( 𝐹 ‘ 𝑖 ) ) |
| 79 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑗 = ∅ ) → 𝑗 = ∅ ) |
| 80 |
79
|
opeq2d |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑗 = ∅ ) → 〈 𝑖 , 𝑗 〉 = 〈 𝑖 , ∅ 〉 ) |
| 81 |
80
|
s1eqd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑗 = ∅ ) → 〈“ 〈 𝑖 , 𝑗 〉 ”〉 = 〈“ 〈 𝑖 , ∅ 〉 ”〉 ) |
| 82 |
81
|
eceq1d |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑗 = ∅ ) → [ 〈“ 〈 𝑖 , 𝑗 〉 ”〉 ] ∼ = [ 〈“ 〈 𝑖 , ∅ 〉 ”〉 ] ∼ ) |
| 83 |
8 12
|
vrgpval |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑖 ∈ 𝐼 ) → ( 𝑈 ‘ 𝑖 ) = [ 〈“ 〈 𝑖 , ∅ 〉 ”〉 ] ∼ ) |
| 84 |
5 83
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) → ( 𝑈 ‘ 𝑖 ) = [ 〈“ 〈 𝑖 , ∅ 〉 ”〉 ] ∼ ) |
| 85 |
84
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑗 = ∅ ) → ( 𝑈 ‘ 𝑖 ) = [ 〈“ 〈 𝑖 , ∅ 〉 ”〉 ] ∼ ) |
| 86 |
82 85
|
eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑗 = ∅ ) → [ 〈“ 〈 𝑖 , 𝑗 〉 ”〉 ] ∼ = ( 𝑈 ‘ 𝑖 ) ) |
| 87 |
86
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑗 = ∅ ) → ( 𝐾 ‘ [ 〈“ 〈 𝑖 , 𝑗 〉 ”〉 ] ∼ ) = ( 𝐾 ‘ ( 𝑈 ‘ 𝑖 ) ) ) |
| 88 |
76 78 87
|
3eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑗 = ∅ ) → if ( 𝑗 = ∅ , ( 𝐹 ‘ 𝑖 ) , ( 𝑁 ‘ ( 𝐹 ‘ 𝑖 ) ) ) = ( 𝐾 ‘ [ 〈“ 〈 𝑖 , 𝑗 〉 ”〉 ] ∼ ) ) |
| 89 |
75
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) → ( 𝑁 ‘ ( 𝐹 ‘ 𝑖 ) ) = ( 𝑁 ‘ ( 𝐾 ‘ ( 𝑈 ‘ 𝑖 ) ) ) ) |
| 90 |
72
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) → ( 𝑈 ‘ 𝑖 ) ∈ 𝑋 ) |
| 91 |
|
eqid |
⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) |
| 92 |
10 91 2
|
ghminv |
⊢ ( ( 𝐾 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ ( 𝑈 ‘ 𝑖 ) ∈ 𝑋 ) → ( 𝐾 ‘ ( ( invg ‘ 𝐺 ) ‘ ( 𝑈 ‘ 𝑖 ) ) ) = ( 𝑁 ‘ ( 𝐾 ‘ ( 𝑈 ‘ 𝑖 ) ) ) ) |
| 93 |
13 90 92
|
syl2an2r |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) → ( 𝐾 ‘ ( ( invg ‘ 𝐺 ) ‘ ( 𝑈 ‘ 𝑖 ) ) ) = ( 𝑁 ‘ ( 𝐾 ‘ ( 𝑈 ‘ 𝑖 ) ) ) ) |
| 94 |
89 93
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) → ( 𝑁 ‘ ( 𝐹 ‘ 𝑖 ) ) = ( 𝐾 ‘ ( ( invg ‘ 𝐺 ) ‘ ( 𝑈 ‘ 𝑖 ) ) ) ) |
| 95 |
94
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑗 = 1o ) → ( 𝑁 ‘ ( 𝐹 ‘ 𝑖 ) ) = ( 𝐾 ‘ ( ( invg ‘ 𝐺 ) ‘ ( 𝑈 ‘ 𝑖 ) ) ) ) |
| 96 |
|
1n0 |
⊢ 1o ≠ ∅ |
| 97 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑗 = 1o ) → 𝑗 = 1o ) |
| 98 |
97
|
neeq1d |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑗 = 1o ) → ( 𝑗 ≠ ∅ ↔ 1o ≠ ∅ ) ) |
| 99 |
96 98
|
mpbiri |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑗 = 1o ) → 𝑗 ≠ ∅ ) |
| 100 |
|
ifnefalse |
⊢ ( 𝑗 ≠ ∅ → if ( 𝑗 = ∅ , ( 𝐹 ‘ 𝑖 ) , ( 𝑁 ‘ ( 𝐹 ‘ 𝑖 ) ) ) = ( 𝑁 ‘ ( 𝐹 ‘ 𝑖 ) ) ) |
| 101 |
99 100
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑗 = 1o ) → if ( 𝑗 = ∅ , ( 𝐹 ‘ 𝑖 ) , ( 𝑁 ‘ ( 𝐹 ‘ 𝑖 ) ) ) = ( 𝑁 ‘ ( 𝐹 ‘ 𝑖 ) ) ) |
| 102 |
97
|
opeq2d |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑗 = 1o ) → 〈 𝑖 , 𝑗 〉 = 〈 𝑖 , 1o 〉 ) |
| 103 |
102
|
s1eqd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑗 = 1o ) → 〈“ 〈 𝑖 , 𝑗 〉 ”〉 = 〈“ 〈 𝑖 , 1o 〉 ”〉 ) |
| 104 |
103
|
eceq1d |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑗 = 1o ) → [ 〈“ 〈 𝑖 , 𝑗 〉 ”〉 ] ∼ = [ 〈“ 〈 𝑖 , 1o 〉 ”〉 ] ∼ ) |
| 105 |
8 12 9 91
|
vrgpinv |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑖 ∈ 𝐼 ) → ( ( invg ‘ 𝐺 ) ‘ ( 𝑈 ‘ 𝑖 ) ) = [ 〈“ 〈 𝑖 , 1o 〉 ”〉 ] ∼ ) |
| 106 |
5 105
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) → ( ( invg ‘ 𝐺 ) ‘ ( 𝑈 ‘ 𝑖 ) ) = [ 〈“ 〈 𝑖 , 1o 〉 ”〉 ] ∼ ) |
| 107 |
106
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑗 = 1o ) → ( ( invg ‘ 𝐺 ) ‘ ( 𝑈 ‘ 𝑖 ) ) = [ 〈“ 〈 𝑖 , 1o 〉 ”〉 ] ∼ ) |
| 108 |
104 107
|
eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑗 = 1o ) → [ 〈“ 〈 𝑖 , 𝑗 〉 ”〉 ] ∼ = ( ( invg ‘ 𝐺 ) ‘ ( 𝑈 ‘ 𝑖 ) ) ) |
| 109 |
108
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑗 = 1o ) → ( 𝐾 ‘ [ 〈“ 〈 𝑖 , 𝑗 〉 ”〉 ] ∼ ) = ( 𝐾 ‘ ( ( invg ‘ 𝐺 ) ‘ ( 𝑈 ‘ 𝑖 ) ) ) ) |
| 110 |
95 101 109
|
3eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑗 = 1o ) → if ( 𝑗 = ∅ , ( 𝐹 ‘ 𝑖 ) , ( 𝑁 ‘ ( 𝐹 ‘ 𝑖 ) ) ) = ( 𝐾 ‘ [ 〈“ 〈 𝑖 , 𝑗 〉 ”〉 ] ∼ ) ) |
| 111 |
88 110
|
jaodan |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) ∧ ( 𝑗 = ∅ ∨ 𝑗 = 1o ) ) → if ( 𝑗 = ∅ , ( 𝐹 ‘ 𝑖 ) , ( 𝑁 ‘ ( 𝐹 ‘ 𝑖 ) ) ) = ( 𝐾 ‘ [ 〈“ 〈 𝑖 , 𝑗 〉 ”〉 ] ∼ ) ) |
| 112 |
68 111
|
sylan2 |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑗 ∈ 2o ) → if ( 𝑗 = ∅ , ( 𝐹 ‘ 𝑖 ) , ( 𝑁 ‘ ( 𝐹 ‘ 𝑖 ) ) ) = ( 𝐾 ‘ [ 〈“ 〈 𝑖 , 𝑗 〉 ”〉 ] ∼ ) ) |
| 113 |
112
|
anasss |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 2o ) ) → if ( 𝑗 = ∅ , ( 𝐹 ‘ 𝑖 ) , ( 𝑁 ‘ ( 𝐹 ‘ 𝑖 ) ) ) = ( 𝐾 ‘ [ 〈“ 〈 𝑖 , 𝑗 〉 ”〉 ] ∼ ) ) |
| 114 |
65 113
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 2o ) ) → ( 𝑖 𝑇 𝑗 ) = ( 𝐾 ‘ [ 〈“ 〈 𝑖 , 𝑗 〉 ”〉 ] ∼ ) ) |
| 115 |
|
fveq2 |
⊢ ( ( 𝑡 ‘ 𝑛 ) = 〈 𝑖 , 𝑗 〉 → ( 𝑇 ‘ ( 𝑡 ‘ 𝑛 ) ) = ( 𝑇 ‘ 〈 𝑖 , 𝑗 〉 ) ) |
| 116 |
|
df-ov |
⊢ ( 𝑖 𝑇 𝑗 ) = ( 𝑇 ‘ 〈 𝑖 , 𝑗 〉 ) |
| 117 |
115 116
|
eqtr4di |
⊢ ( ( 𝑡 ‘ 𝑛 ) = 〈 𝑖 , 𝑗 〉 → ( 𝑇 ‘ ( 𝑡 ‘ 𝑛 ) ) = ( 𝑖 𝑇 𝑗 ) ) |
| 118 |
|
s1eq |
⊢ ( ( 𝑡 ‘ 𝑛 ) = 〈 𝑖 , 𝑗 〉 → 〈“ ( 𝑡 ‘ 𝑛 ) ”〉 = 〈“ 〈 𝑖 , 𝑗 〉 ”〉 ) |
| 119 |
118
|
eceq1d |
⊢ ( ( 𝑡 ‘ 𝑛 ) = 〈 𝑖 , 𝑗 〉 → [ 〈“ ( 𝑡 ‘ 𝑛 ) ”〉 ] ∼ = [ 〈“ 〈 𝑖 , 𝑗 〉 ”〉 ] ∼ ) |
| 120 |
119
|
fveq2d |
⊢ ( ( 𝑡 ‘ 𝑛 ) = 〈 𝑖 , 𝑗 〉 → ( 𝐾 ‘ [ 〈“ ( 𝑡 ‘ 𝑛 ) ”〉 ] ∼ ) = ( 𝐾 ‘ [ 〈“ 〈 𝑖 , 𝑗 〉 ”〉 ] ∼ ) ) |
| 121 |
117 120
|
eqeq12d |
⊢ ( ( 𝑡 ‘ 𝑛 ) = 〈 𝑖 , 𝑗 〉 → ( ( 𝑇 ‘ ( 𝑡 ‘ 𝑛 ) ) = ( 𝐾 ‘ [ 〈“ ( 𝑡 ‘ 𝑛 ) ”〉 ] ∼ ) ↔ ( 𝑖 𝑇 𝑗 ) = ( 𝐾 ‘ [ 〈“ 〈 𝑖 , 𝑗 〉 ”〉 ] ∼ ) ) ) |
| 122 |
114 121
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 2o ) ) → ( ( 𝑡 ‘ 𝑛 ) = 〈 𝑖 , 𝑗 〉 → ( 𝑇 ‘ ( 𝑡 ‘ 𝑛 ) ) = ( 𝐾 ‘ [ 〈“ ( 𝑡 ‘ 𝑛 ) ”〉 ] ∼ ) ) ) |
| 123 |
122
|
rexlimdvva |
⊢ ( 𝜑 → ( ∃ 𝑖 ∈ 𝐼 ∃ 𝑗 ∈ 2o ( 𝑡 ‘ 𝑛 ) = 〈 𝑖 , 𝑗 〉 → ( 𝑇 ‘ ( 𝑡 ‘ 𝑛 ) ) = ( 𝐾 ‘ [ 〈“ ( 𝑡 ‘ 𝑛 ) ”〉 ] ∼ ) ) ) |
| 124 |
123
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑊 ) ∧ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑡 ) ) ) → ( ∃ 𝑖 ∈ 𝐼 ∃ 𝑗 ∈ 2o ( 𝑡 ‘ 𝑛 ) = 〈 𝑖 , 𝑗 〉 → ( 𝑇 ‘ ( 𝑡 ‘ 𝑛 ) ) = ( 𝐾 ‘ [ 〈“ ( 𝑡 ‘ 𝑛 ) ”〉 ] ∼ ) ) ) |
| 125 |
55 124
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑊 ) ∧ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑡 ) ) ) → ( 𝑇 ‘ ( 𝑡 ‘ 𝑛 ) ) = ( 𝐾 ‘ [ 〈“ ( 𝑡 ‘ 𝑛 ) ”〉 ] ∼ ) ) |
| 126 |
125
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑊 ) → ( 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑡 ) ) ↦ ( 𝑇 ‘ ( 𝑡 ‘ 𝑛 ) ) ) = ( 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑡 ) ) ↦ ( 𝐾 ‘ [ 〈“ ( 𝑡 ‘ 𝑛 ) ”〉 ] ∼ ) ) ) |
| 127 |
1 2 3 4 5 6
|
frgpuptf |
⊢ ( 𝜑 → 𝑇 : ( 𝐼 × 2o ) ⟶ 𝐵 ) |
| 128 |
|
fcompt |
⊢ ( ( 𝑇 : ( 𝐼 × 2o ) ⟶ 𝐵 ∧ 𝑡 : ( 0 ..^ ( ♯ ‘ 𝑡 ) ) ⟶ ( 𝐼 × 2o ) ) → ( 𝑇 ∘ 𝑡 ) = ( 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑡 ) ) ↦ ( 𝑇 ‘ ( 𝑡 ‘ 𝑛 ) ) ) ) |
| 129 |
127 52 128
|
syl2an2r |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑊 ) → ( 𝑇 ∘ 𝑡 ) = ( 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑡 ) ) ↦ ( 𝑇 ‘ ( 𝑡 ‘ 𝑛 ) ) ) ) |
| 130 |
53
|
s1cld |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑊 ) ∧ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑡 ) ) ) → 〈“ ( 𝑡 ‘ 𝑛 ) ”〉 ∈ Word ( 𝐼 × 2o ) ) |
| 131 |
31
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑊 ) ∧ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑡 ) ) ) → 𝑊 = Word ( 𝐼 × 2o ) ) |
| 132 |
130 131
|
eleqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑊 ) ∧ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑡 ) ) ) → 〈“ ( 𝑡 ‘ 𝑛 ) ”〉 ∈ 𝑊 ) |
| 133 |
9 8 7 10
|
frgpeccl |
⊢ ( 〈“ ( 𝑡 ‘ 𝑛 ) ”〉 ∈ 𝑊 → [ 〈“ ( 𝑡 ‘ 𝑛 ) ”〉 ] ∼ ∈ 𝑋 ) |
| 134 |
132 133
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑊 ) ∧ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑡 ) ) ) → [ 〈“ ( 𝑡 ‘ 𝑛 ) ”〉 ] ∼ ∈ 𝑋 ) |
| 135 |
52
|
feqmptd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑊 ) → 𝑡 = ( 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑡 ) ) ↦ ( 𝑡 ‘ 𝑛 ) ) ) |
| 136 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑊 ) → 𝐼 ∈ 𝑉 ) |
| 137 |
136 25 26
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑊 ) → ( 𝐼 × 2o ) ∈ V ) |
| 138 |
|
eqid |
⊢ ( varFMnd ‘ ( 𝐼 × 2o ) ) = ( varFMnd ‘ ( 𝐼 × 2o ) ) |
| 139 |
138
|
vrmdfval |
⊢ ( ( 𝐼 × 2o ) ∈ V → ( varFMnd ‘ ( 𝐼 × 2o ) ) = ( 𝑤 ∈ ( 𝐼 × 2o ) ↦ 〈“ 𝑤 ”〉 ) ) |
| 140 |
137 139
|
syl |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑊 ) → ( varFMnd ‘ ( 𝐼 × 2o ) ) = ( 𝑤 ∈ ( 𝐼 × 2o ) ↦ 〈“ 𝑤 ”〉 ) ) |
| 141 |
|
s1eq |
⊢ ( 𝑤 = ( 𝑡 ‘ 𝑛 ) → 〈“ 𝑤 ”〉 = 〈“ ( 𝑡 ‘ 𝑛 ) ”〉 ) |
| 142 |
53 135 140 141
|
fmptco |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑊 ) → ( ( varFMnd ‘ ( 𝐼 × 2o ) ) ∘ 𝑡 ) = ( 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑡 ) ) ↦ 〈“ ( 𝑡 ‘ 𝑛 ) ”〉 ) ) |
| 143 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑊 ) → ( 𝑤 ∈ 𝑊 ↦ [ 𝑤 ] ∼ ) = ( 𝑤 ∈ 𝑊 ↦ [ 𝑤 ] ∼ ) ) |
| 144 |
|
eceq1 |
⊢ ( 𝑤 = 〈“ ( 𝑡 ‘ 𝑛 ) ”〉 → [ 𝑤 ] ∼ = [ 〈“ ( 𝑡 ‘ 𝑛 ) ”〉 ] ∼ ) |
| 145 |
132 142 143 144
|
fmptco |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑊 ) → ( ( 𝑤 ∈ 𝑊 ↦ [ 𝑤 ] ∼ ) ∘ ( ( varFMnd ‘ ( 𝐼 × 2o ) ) ∘ 𝑡 ) ) = ( 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑡 ) ) ↦ [ 〈“ ( 𝑡 ‘ 𝑛 ) ”〉 ] ∼ ) ) |
| 146 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑊 ) → 𝐾 ∈ ( 𝐺 GrpHom 𝐻 ) ) |
| 147 |
146 15
|
syl |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑊 ) → 𝐾 : 𝑋 ⟶ 𝐵 ) |
| 148 |
147
|
feqmptd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑊 ) → 𝐾 = ( 𝑤 ∈ 𝑋 ↦ ( 𝐾 ‘ 𝑤 ) ) ) |
| 149 |
|
fveq2 |
⊢ ( 𝑤 = [ 〈“ ( 𝑡 ‘ 𝑛 ) ”〉 ] ∼ → ( 𝐾 ‘ 𝑤 ) = ( 𝐾 ‘ [ 〈“ ( 𝑡 ‘ 𝑛 ) ”〉 ] ∼ ) ) |
| 150 |
134 145 148 149
|
fmptco |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑊 ) → ( 𝐾 ∘ ( ( 𝑤 ∈ 𝑊 ↦ [ 𝑤 ] ∼ ) ∘ ( ( varFMnd ‘ ( 𝐼 × 2o ) ) ∘ 𝑡 ) ) ) = ( 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑡 ) ) ↦ ( 𝐾 ‘ [ 〈“ ( 𝑡 ‘ 𝑛 ) ”〉 ] ∼ ) ) ) |
| 151 |
126 129 150
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑊 ) → ( 𝑇 ∘ 𝑡 ) = ( 𝐾 ∘ ( ( 𝑤 ∈ 𝑊 ↦ [ 𝑤 ] ∼ ) ∘ ( ( varFMnd ‘ ( 𝐼 × 2o ) ) ∘ 𝑡 ) ) ) ) |
| 152 |
151
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑊 ) → ( 𝐻 Σg ( 𝑇 ∘ 𝑡 ) ) = ( 𝐻 Σg ( 𝐾 ∘ ( ( 𝑤 ∈ 𝑊 ↦ [ 𝑤 ] ∼ ) ∘ ( ( varFMnd ‘ ( 𝐼 × 2o ) ) ∘ 𝑡 ) ) ) ) ) |
| 153 |
1 2 3 4 5 6 7 8 9 10 11
|
frgpupval |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑊 ) → ( 𝐸 ‘ [ 𝑡 ] ∼ ) = ( 𝐻 Σg ( 𝑇 ∘ 𝑡 ) ) ) |
| 154 |
|
ghmmhm |
⊢ ( 𝐾 ∈ ( 𝐺 GrpHom 𝐻 ) → 𝐾 ∈ ( 𝐺 MndHom 𝐻 ) ) |
| 155 |
146 154
|
syl |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑊 ) → 𝐾 ∈ ( 𝐺 MndHom 𝐻 ) ) |
| 156 |
138
|
vrmdf |
⊢ ( ( 𝐼 × 2o ) ∈ V → ( varFMnd ‘ ( 𝐼 × 2o ) ) : ( 𝐼 × 2o ) ⟶ Word ( 𝐼 × 2o ) ) |
| 157 |
137 156
|
syl |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑊 ) → ( varFMnd ‘ ( 𝐼 × 2o ) ) : ( 𝐼 × 2o ) ⟶ Word ( 𝐼 × 2o ) ) |
| 158 |
49
|
feq3d |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑊 ) → ( ( varFMnd ‘ ( 𝐼 × 2o ) ) : ( 𝐼 × 2o ) ⟶ 𝑊 ↔ ( varFMnd ‘ ( 𝐼 × 2o ) ) : ( 𝐼 × 2o ) ⟶ Word ( 𝐼 × 2o ) ) ) |
| 159 |
157 158
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑊 ) → ( varFMnd ‘ ( 𝐼 × 2o ) ) : ( 𝐼 × 2o ) ⟶ 𝑊 ) |
| 160 |
|
wrdco |
⊢ ( ( 𝑡 ∈ Word ( 𝐼 × 2o ) ∧ ( varFMnd ‘ ( 𝐼 × 2o ) ) : ( 𝐼 × 2o ) ⟶ 𝑊 ) → ( ( varFMnd ‘ ( 𝐼 × 2o ) ) ∘ 𝑡 ) ∈ Word 𝑊 ) |
| 161 |
50 159 160
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑊 ) → ( ( varFMnd ‘ ( 𝐼 × 2o ) ) ∘ 𝑡 ) ∈ Word 𝑊 ) |
| 162 |
35
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑊 ) → 𝑊 = ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) ) |
| 163 |
162
|
mpteq1d |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑊 ) → ( 𝑤 ∈ 𝑊 ↦ [ 𝑤 ] ∼ ) = ( 𝑤 ∈ ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) ↦ [ 𝑤 ] ∼ ) ) |
| 164 |
|
eqid |
⊢ ( 𝑤 ∈ ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) ↦ [ 𝑤 ] ∼ ) = ( 𝑤 ∈ ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) ↦ [ 𝑤 ] ∼ ) |
| 165 |
22 32 9 8 164
|
frgpmhm |
⊢ ( 𝐼 ∈ 𝑉 → ( 𝑤 ∈ ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) ↦ [ 𝑤 ] ∼ ) ∈ ( ( freeMnd ‘ ( 𝐼 × 2o ) ) MndHom 𝐺 ) ) |
| 166 |
136 165
|
syl |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑊 ) → ( 𝑤 ∈ ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) ↦ [ 𝑤 ] ∼ ) ∈ ( ( freeMnd ‘ ( 𝐼 × 2o ) ) MndHom 𝐺 ) ) |
| 167 |
163 166
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑊 ) → ( 𝑤 ∈ 𝑊 ↦ [ 𝑤 ] ∼ ) ∈ ( ( freeMnd ‘ ( 𝐼 × 2o ) ) MndHom 𝐺 ) ) |
| 168 |
32 10
|
mhmf |
⊢ ( ( 𝑤 ∈ 𝑊 ↦ [ 𝑤 ] ∼ ) ∈ ( ( freeMnd ‘ ( 𝐼 × 2o ) ) MndHom 𝐺 ) → ( 𝑤 ∈ 𝑊 ↦ [ 𝑤 ] ∼ ) : ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) ⟶ 𝑋 ) |
| 169 |
167 168
|
syl |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑊 ) → ( 𝑤 ∈ 𝑊 ↦ [ 𝑤 ] ∼ ) : ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) ⟶ 𝑋 ) |
| 170 |
162
|
feq2d |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑊 ) → ( ( 𝑤 ∈ 𝑊 ↦ [ 𝑤 ] ∼ ) : 𝑊 ⟶ 𝑋 ↔ ( 𝑤 ∈ 𝑊 ↦ [ 𝑤 ] ∼ ) : ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) ⟶ 𝑋 ) ) |
| 171 |
169 170
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑊 ) → ( 𝑤 ∈ 𝑊 ↦ [ 𝑤 ] ∼ ) : 𝑊 ⟶ 𝑋 ) |
| 172 |
|
wrdco |
⊢ ( ( ( ( varFMnd ‘ ( 𝐼 × 2o ) ) ∘ 𝑡 ) ∈ Word 𝑊 ∧ ( 𝑤 ∈ 𝑊 ↦ [ 𝑤 ] ∼ ) : 𝑊 ⟶ 𝑋 ) → ( ( 𝑤 ∈ 𝑊 ↦ [ 𝑤 ] ∼ ) ∘ ( ( varFMnd ‘ ( 𝐼 × 2o ) ) ∘ 𝑡 ) ) ∈ Word 𝑋 ) |
| 173 |
161 171 172
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑊 ) → ( ( 𝑤 ∈ 𝑊 ↦ [ 𝑤 ] ∼ ) ∘ ( ( varFMnd ‘ ( 𝐼 × 2o ) ) ∘ 𝑡 ) ) ∈ Word 𝑋 ) |
| 174 |
10
|
gsumwmhm |
⊢ ( ( 𝐾 ∈ ( 𝐺 MndHom 𝐻 ) ∧ ( ( 𝑤 ∈ 𝑊 ↦ [ 𝑤 ] ∼ ) ∘ ( ( varFMnd ‘ ( 𝐼 × 2o ) ) ∘ 𝑡 ) ) ∈ Word 𝑋 ) → ( 𝐾 ‘ ( 𝐺 Σg ( ( 𝑤 ∈ 𝑊 ↦ [ 𝑤 ] ∼ ) ∘ ( ( varFMnd ‘ ( 𝐼 × 2o ) ) ∘ 𝑡 ) ) ) ) = ( 𝐻 Σg ( 𝐾 ∘ ( ( 𝑤 ∈ 𝑊 ↦ [ 𝑤 ] ∼ ) ∘ ( ( varFMnd ‘ ( 𝐼 × 2o ) ) ∘ 𝑡 ) ) ) ) ) |
| 175 |
155 173 174
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑊 ) → ( 𝐾 ‘ ( 𝐺 Σg ( ( 𝑤 ∈ 𝑊 ↦ [ 𝑤 ] ∼ ) ∘ ( ( varFMnd ‘ ( 𝐼 × 2o ) ) ∘ 𝑡 ) ) ) ) = ( 𝐻 Σg ( 𝐾 ∘ ( ( 𝑤 ∈ 𝑊 ↦ [ 𝑤 ] ∼ ) ∘ ( ( varFMnd ‘ ( 𝐼 × 2o ) ) ∘ 𝑡 ) ) ) ) ) |
| 176 |
152 153 175
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑊 ) → ( 𝐸 ‘ [ 𝑡 ] ∼ ) = ( 𝐾 ‘ ( 𝐺 Σg ( ( 𝑤 ∈ 𝑊 ↦ [ 𝑤 ] ∼ ) ∘ ( ( varFMnd ‘ ( 𝐼 × 2o ) ) ∘ 𝑡 ) ) ) ) ) |
| 177 |
22 138
|
frmdgsum |
⊢ ( ( ( 𝐼 × 2o ) ∈ V ∧ 𝑡 ∈ Word ( 𝐼 × 2o ) ) → ( ( freeMnd ‘ ( 𝐼 × 2o ) ) Σg ( ( varFMnd ‘ ( 𝐼 × 2o ) ) ∘ 𝑡 ) ) = 𝑡 ) |
| 178 |
27 50 177
|
syl2an2r |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑊 ) → ( ( freeMnd ‘ ( 𝐼 × 2o ) ) Σg ( ( varFMnd ‘ ( 𝐼 × 2o ) ) ∘ 𝑡 ) ) = 𝑡 ) |
| 179 |
178
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑊 ) → ( ( 𝑤 ∈ 𝑊 ↦ [ 𝑤 ] ∼ ) ‘ ( ( freeMnd ‘ ( 𝐼 × 2o ) ) Σg ( ( varFMnd ‘ ( 𝐼 × 2o ) ) ∘ 𝑡 ) ) ) = ( ( 𝑤 ∈ 𝑊 ↦ [ 𝑤 ] ∼ ) ‘ 𝑡 ) ) |
| 180 |
|
wrdco |
⊢ ( ( 𝑡 ∈ Word ( 𝐼 × 2o ) ∧ ( varFMnd ‘ ( 𝐼 × 2o ) ) : ( 𝐼 × 2o ) ⟶ Word ( 𝐼 × 2o ) ) → ( ( varFMnd ‘ ( 𝐼 × 2o ) ) ∘ 𝑡 ) ∈ Word Word ( 𝐼 × 2o ) ) |
| 181 |
50 157 180
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑊 ) → ( ( varFMnd ‘ ( 𝐼 × 2o ) ) ∘ 𝑡 ) ∈ Word Word ( 𝐼 × 2o ) ) |
| 182 |
34
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑊 ) → ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) = Word ( 𝐼 × 2o ) ) |
| 183 |
|
wrdeq |
⊢ ( ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) = Word ( 𝐼 × 2o ) → Word ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) = Word Word ( 𝐼 × 2o ) ) |
| 184 |
182 183
|
syl |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑊 ) → Word ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) = Word Word ( 𝐼 × 2o ) ) |
| 185 |
181 184
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑊 ) → ( ( varFMnd ‘ ( 𝐼 × 2o ) ) ∘ 𝑡 ) ∈ Word ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) ) |
| 186 |
32
|
gsumwmhm |
⊢ ( ( ( 𝑤 ∈ 𝑊 ↦ [ 𝑤 ] ∼ ) ∈ ( ( freeMnd ‘ ( 𝐼 × 2o ) ) MndHom 𝐺 ) ∧ ( ( varFMnd ‘ ( 𝐼 × 2o ) ) ∘ 𝑡 ) ∈ Word ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) ) → ( ( 𝑤 ∈ 𝑊 ↦ [ 𝑤 ] ∼ ) ‘ ( ( freeMnd ‘ ( 𝐼 × 2o ) ) Σg ( ( varFMnd ‘ ( 𝐼 × 2o ) ) ∘ 𝑡 ) ) ) = ( 𝐺 Σg ( ( 𝑤 ∈ 𝑊 ↦ [ 𝑤 ] ∼ ) ∘ ( ( varFMnd ‘ ( 𝐼 × 2o ) ) ∘ 𝑡 ) ) ) ) |
| 187 |
167 185 186
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑊 ) → ( ( 𝑤 ∈ 𝑊 ↦ [ 𝑤 ] ∼ ) ‘ ( ( freeMnd ‘ ( 𝐼 × 2o ) ) Σg ( ( varFMnd ‘ ( 𝐼 × 2o ) ) ∘ 𝑡 ) ) ) = ( 𝐺 Σg ( ( 𝑤 ∈ 𝑊 ↦ [ 𝑤 ] ∼ ) ∘ ( ( varFMnd ‘ ( 𝐼 × 2o ) ) ∘ 𝑡 ) ) ) ) |
| 188 |
7 8
|
efger |
⊢ ∼ Er 𝑊 |
| 189 |
188
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑊 ) → ∼ Er 𝑊 ) |
| 190 |
7
|
fvexi |
⊢ 𝑊 ∈ V |
| 191 |
190
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑊 ) → 𝑊 ∈ V ) |
| 192 |
|
eqid |
⊢ ( 𝑤 ∈ 𝑊 ↦ [ 𝑤 ] ∼ ) = ( 𝑤 ∈ 𝑊 ↦ [ 𝑤 ] ∼ ) |
| 193 |
189 191 192
|
divsfval |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑊 ) → ( ( 𝑤 ∈ 𝑊 ↦ [ 𝑤 ] ∼ ) ‘ 𝑡 ) = [ 𝑡 ] ∼ ) |
| 194 |
179 187 193
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑊 ) → ( 𝐺 Σg ( ( 𝑤 ∈ 𝑊 ↦ [ 𝑤 ] ∼ ) ∘ ( ( varFMnd ‘ ( 𝐼 × 2o ) ) ∘ 𝑡 ) ) ) = [ 𝑡 ] ∼ ) |
| 195 |
194
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑊 ) → ( 𝐾 ‘ ( 𝐺 Σg ( ( 𝑤 ∈ 𝑊 ↦ [ 𝑤 ] ∼ ) ∘ ( ( varFMnd ‘ ( 𝐼 × 2o ) ) ∘ 𝑡 ) ) ) ) = ( 𝐾 ‘ [ 𝑡 ] ∼ ) ) |
| 196 |
176 195
|
eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑊 ) → ( 𝐾 ‘ [ 𝑡 ] ∼ ) = ( 𝐸 ‘ [ 𝑡 ] ∼ ) ) |
| 197 |
44 47 196
|
ectocld |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑊 / ∼ ) ) → ( 𝐾 ‘ 𝑎 ) = ( 𝐸 ‘ 𝑎 ) ) |
| 198 |
43 197
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑋 ) → ( 𝐾 ‘ 𝑎 ) = ( 𝐸 ‘ 𝑎 ) ) |
| 199 |
17 21 198
|
eqfnfvd |
⊢ ( 𝜑 → 𝐾 = 𝐸 ) |