Step |
Hyp |
Ref |
Expression |
1 |
|
frgpup.b |
⊢ 𝐵 = ( Base ‘ 𝐻 ) |
2 |
|
frgpup.n |
⊢ 𝑁 = ( invg ‘ 𝐻 ) |
3 |
|
frgpup.t |
⊢ 𝑇 = ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ if ( 𝑧 = ∅ , ( 𝐹 ‘ 𝑦 ) , ( 𝑁 ‘ ( 𝐹 ‘ 𝑦 ) ) ) ) |
4 |
|
frgpup.h |
⊢ ( 𝜑 → 𝐻 ∈ Grp ) |
5 |
|
frgpup.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
6 |
|
frgpup.a |
⊢ ( 𝜑 → 𝐹 : 𝐼 ⟶ 𝐵 ) |
7 |
|
frgpup.w |
⊢ 𝑊 = ( I ‘ Word ( 𝐼 × 2o ) ) |
8 |
|
frgpup.r |
⊢ ∼ = ( ~FG ‘ 𝐼 ) |
9 |
|
frgpup.g |
⊢ 𝐺 = ( freeGrp ‘ 𝐼 ) |
10 |
|
frgpup.x |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
11 |
|
frgpup.e |
⊢ 𝐸 = ran ( 𝑔 ∈ 𝑊 ↦ 〈 [ 𝑔 ] ∼ , ( 𝐻 Σg ( 𝑇 ∘ 𝑔 ) ) 〉 ) |
12 |
4
|
grpmndd |
⊢ ( 𝜑 → 𝐻 ∈ Mnd ) |
13 |
|
fviss |
⊢ ( I ‘ Word ( 𝐼 × 2o ) ) ⊆ Word ( 𝐼 × 2o ) |
14 |
7 13
|
eqsstri |
⊢ 𝑊 ⊆ Word ( 𝐼 × 2o ) |
15 |
14
|
sseli |
⊢ ( 𝑔 ∈ 𝑊 → 𝑔 ∈ Word ( 𝐼 × 2o ) ) |
16 |
1 2 3 4 5 6
|
frgpuptf |
⊢ ( 𝜑 → 𝑇 : ( 𝐼 × 2o ) ⟶ 𝐵 ) |
17 |
|
wrdco |
⊢ ( ( 𝑔 ∈ Word ( 𝐼 × 2o ) ∧ 𝑇 : ( 𝐼 × 2o ) ⟶ 𝐵 ) → ( 𝑇 ∘ 𝑔 ) ∈ Word 𝐵 ) |
18 |
15 16 17
|
syl2anr |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑊 ) → ( 𝑇 ∘ 𝑔 ) ∈ Word 𝐵 ) |
19 |
1
|
gsumwcl |
⊢ ( ( 𝐻 ∈ Mnd ∧ ( 𝑇 ∘ 𝑔 ) ∈ Word 𝐵 ) → ( 𝐻 Σg ( 𝑇 ∘ 𝑔 ) ) ∈ 𝐵 ) |
20 |
12 18 19
|
syl2an2r |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑊 ) → ( 𝐻 Σg ( 𝑇 ∘ 𝑔 ) ) ∈ 𝐵 ) |
21 |
7 8
|
efger |
⊢ ∼ Er 𝑊 |
22 |
21
|
a1i |
⊢ ( 𝜑 → ∼ Er 𝑊 ) |
23 |
7
|
fvexi |
⊢ 𝑊 ∈ V |
24 |
23
|
a1i |
⊢ ( 𝜑 → 𝑊 ∈ V ) |
25 |
|
coeq2 |
⊢ ( 𝑔 = ℎ → ( 𝑇 ∘ 𝑔 ) = ( 𝑇 ∘ ℎ ) ) |
26 |
25
|
oveq2d |
⊢ ( 𝑔 = ℎ → ( 𝐻 Σg ( 𝑇 ∘ 𝑔 ) ) = ( 𝐻 Σg ( 𝑇 ∘ ℎ ) ) ) |
27 |
1 2 3 4 5 6 7 8
|
frgpuplem |
⊢ ( ( 𝜑 ∧ 𝑔 ∼ ℎ ) → ( 𝐻 Σg ( 𝑇 ∘ 𝑔 ) ) = ( 𝐻 Σg ( 𝑇 ∘ ℎ ) ) ) |
28 |
11 20 22 24 26 27
|
qliftfund |
⊢ ( 𝜑 → Fun 𝐸 ) |
29 |
11 20 22 24
|
qliftf |
⊢ ( 𝜑 → ( Fun 𝐸 ↔ 𝐸 : ( 𝑊 / ∼ ) ⟶ 𝐵 ) ) |
30 |
28 29
|
mpbid |
⊢ ( 𝜑 → 𝐸 : ( 𝑊 / ∼ ) ⟶ 𝐵 ) |
31 |
|
eqid |
⊢ ( freeMnd ‘ ( 𝐼 × 2o ) ) = ( freeMnd ‘ ( 𝐼 × 2o ) ) |
32 |
9 31 8
|
frgpval |
⊢ ( 𝐼 ∈ 𝑉 → 𝐺 = ( ( freeMnd ‘ ( 𝐼 × 2o ) ) /s ∼ ) ) |
33 |
5 32
|
syl |
⊢ ( 𝜑 → 𝐺 = ( ( freeMnd ‘ ( 𝐼 × 2o ) ) /s ∼ ) ) |
34 |
|
2on |
⊢ 2o ∈ On |
35 |
|
xpexg |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 2o ∈ On ) → ( 𝐼 × 2o ) ∈ V ) |
36 |
5 34 35
|
sylancl |
⊢ ( 𝜑 → ( 𝐼 × 2o ) ∈ V ) |
37 |
|
wrdexg |
⊢ ( ( 𝐼 × 2o ) ∈ V → Word ( 𝐼 × 2o ) ∈ V ) |
38 |
|
fvi |
⊢ ( Word ( 𝐼 × 2o ) ∈ V → ( I ‘ Word ( 𝐼 × 2o ) ) = Word ( 𝐼 × 2o ) ) |
39 |
36 37 38
|
3syl |
⊢ ( 𝜑 → ( I ‘ Word ( 𝐼 × 2o ) ) = Word ( 𝐼 × 2o ) ) |
40 |
7 39
|
eqtrid |
⊢ ( 𝜑 → 𝑊 = Word ( 𝐼 × 2o ) ) |
41 |
|
eqid |
⊢ ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) = ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) |
42 |
31 41
|
frmdbas |
⊢ ( ( 𝐼 × 2o ) ∈ V → ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) = Word ( 𝐼 × 2o ) ) |
43 |
36 42
|
syl |
⊢ ( 𝜑 → ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) = Word ( 𝐼 × 2o ) ) |
44 |
40 43
|
eqtr4d |
⊢ ( 𝜑 → 𝑊 = ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) ) |
45 |
8
|
fvexi |
⊢ ∼ ∈ V |
46 |
45
|
a1i |
⊢ ( 𝜑 → ∼ ∈ V ) |
47 |
|
fvexd |
⊢ ( 𝜑 → ( freeMnd ‘ ( 𝐼 × 2o ) ) ∈ V ) |
48 |
33 44 46 47
|
qusbas |
⊢ ( 𝜑 → ( 𝑊 / ∼ ) = ( Base ‘ 𝐺 ) ) |
49 |
10 48
|
eqtr4id |
⊢ ( 𝜑 → 𝑋 = ( 𝑊 / ∼ ) ) |
50 |
49
|
feq2d |
⊢ ( 𝜑 → ( 𝐸 : 𝑋 ⟶ 𝐵 ↔ 𝐸 : ( 𝑊 / ∼ ) ⟶ 𝐵 ) ) |
51 |
30 50
|
mpbird |
⊢ ( 𝜑 → 𝐸 : 𝑋 ⟶ 𝐵 ) |