Metamath Proof Explorer


Theorem frgpupf

Description: Any assignment of the generators to target elements can be extended (uniquely) to a homomorphism from a free monoid to an arbitrary other monoid. (Contributed by Mario Carneiro, 2-Oct-2015)

Ref Expression
Hypotheses frgpup.b 𝐵 = ( Base ‘ 𝐻 )
frgpup.n 𝑁 = ( invg𝐻 )
frgpup.t 𝑇 = ( 𝑦𝐼 , 𝑧 ∈ 2o ↦ if ( 𝑧 = ∅ , ( 𝐹𝑦 ) , ( 𝑁 ‘ ( 𝐹𝑦 ) ) ) )
frgpup.h ( 𝜑𝐻 ∈ Grp )
frgpup.i ( 𝜑𝐼𝑉 )
frgpup.a ( 𝜑𝐹 : 𝐼𝐵 )
frgpup.w 𝑊 = ( I ‘ Word ( 𝐼 × 2o ) )
frgpup.r = ( ~FG𝐼 )
frgpup.g 𝐺 = ( freeGrp ‘ 𝐼 )
frgpup.x 𝑋 = ( Base ‘ 𝐺 )
frgpup.e 𝐸 = ran ( 𝑔𝑊 ↦ ⟨ [ 𝑔 ] , ( 𝐻 Σg ( 𝑇𝑔 ) ) ⟩ )
Assertion frgpupf ( 𝜑𝐸 : 𝑋𝐵 )

Proof

Step Hyp Ref Expression
1 frgpup.b 𝐵 = ( Base ‘ 𝐻 )
2 frgpup.n 𝑁 = ( invg𝐻 )
3 frgpup.t 𝑇 = ( 𝑦𝐼 , 𝑧 ∈ 2o ↦ if ( 𝑧 = ∅ , ( 𝐹𝑦 ) , ( 𝑁 ‘ ( 𝐹𝑦 ) ) ) )
4 frgpup.h ( 𝜑𝐻 ∈ Grp )
5 frgpup.i ( 𝜑𝐼𝑉 )
6 frgpup.a ( 𝜑𝐹 : 𝐼𝐵 )
7 frgpup.w 𝑊 = ( I ‘ Word ( 𝐼 × 2o ) )
8 frgpup.r = ( ~FG𝐼 )
9 frgpup.g 𝐺 = ( freeGrp ‘ 𝐼 )
10 frgpup.x 𝑋 = ( Base ‘ 𝐺 )
11 frgpup.e 𝐸 = ran ( 𝑔𝑊 ↦ ⟨ [ 𝑔 ] , ( 𝐻 Σg ( 𝑇𝑔 ) ) ⟩ )
12 4 grpmndd ( 𝜑𝐻 ∈ Mnd )
13 fviss ( I ‘ Word ( 𝐼 × 2o ) ) ⊆ Word ( 𝐼 × 2o )
14 7 13 eqsstri 𝑊 ⊆ Word ( 𝐼 × 2o )
15 14 sseli ( 𝑔𝑊𝑔 ∈ Word ( 𝐼 × 2o ) )
16 1 2 3 4 5 6 frgpuptf ( 𝜑𝑇 : ( 𝐼 × 2o ) ⟶ 𝐵 )
17 wrdco ( ( 𝑔 ∈ Word ( 𝐼 × 2o ) ∧ 𝑇 : ( 𝐼 × 2o ) ⟶ 𝐵 ) → ( 𝑇𝑔 ) ∈ Word 𝐵 )
18 15 16 17 syl2anr ( ( 𝜑𝑔𝑊 ) → ( 𝑇𝑔 ) ∈ Word 𝐵 )
19 1 gsumwcl ( ( 𝐻 ∈ Mnd ∧ ( 𝑇𝑔 ) ∈ Word 𝐵 ) → ( 𝐻 Σg ( 𝑇𝑔 ) ) ∈ 𝐵 )
20 12 18 19 syl2an2r ( ( 𝜑𝑔𝑊 ) → ( 𝐻 Σg ( 𝑇𝑔 ) ) ∈ 𝐵 )
21 7 8 efger Er 𝑊
22 21 a1i ( 𝜑 Er 𝑊 )
23 7 fvexi 𝑊 ∈ V
24 23 a1i ( 𝜑𝑊 ∈ V )
25 coeq2 ( 𝑔 = → ( 𝑇𝑔 ) = ( 𝑇 ) )
26 25 oveq2d ( 𝑔 = → ( 𝐻 Σg ( 𝑇𝑔 ) ) = ( 𝐻 Σg ( 𝑇 ) ) )
27 1 2 3 4 5 6 7 8 frgpuplem ( ( 𝜑𝑔 ) → ( 𝐻 Σg ( 𝑇𝑔 ) ) = ( 𝐻 Σg ( 𝑇 ) ) )
28 11 20 22 24 26 27 qliftfund ( 𝜑 → Fun 𝐸 )
29 11 20 22 24 qliftf ( 𝜑 → ( Fun 𝐸𝐸 : ( 𝑊 / ) ⟶ 𝐵 ) )
30 28 29 mpbid ( 𝜑𝐸 : ( 𝑊 / ) ⟶ 𝐵 )
31 eqid ( freeMnd ‘ ( 𝐼 × 2o ) ) = ( freeMnd ‘ ( 𝐼 × 2o ) )
32 9 31 8 frgpval ( 𝐼𝑉𝐺 = ( ( freeMnd ‘ ( 𝐼 × 2o ) ) /s ) )
33 5 32 syl ( 𝜑𝐺 = ( ( freeMnd ‘ ( 𝐼 × 2o ) ) /s ) )
34 2on 2o ∈ On
35 xpexg ( ( 𝐼𝑉 ∧ 2o ∈ On ) → ( 𝐼 × 2o ) ∈ V )
36 5 34 35 sylancl ( 𝜑 → ( 𝐼 × 2o ) ∈ V )
37 wrdexg ( ( 𝐼 × 2o ) ∈ V → Word ( 𝐼 × 2o ) ∈ V )
38 fvi ( Word ( 𝐼 × 2o ) ∈ V → ( I ‘ Word ( 𝐼 × 2o ) ) = Word ( 𝐼 × 2o ) )
39 36 37 38 3syl ( 𝜑 → ( I ‘ Word ( 𝐼 × 2o ) ) = Word ( 𝐼 × 2o ) )
40 7 39 syl5eq ( 𝜑𝑊 = Word ( 𝐼 × 2o ) )
41 eqid ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) = ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) )
42 31 41 frmdbas ( ( 𝐼 × 2o ) ∈ V → ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) = Word ( 𝐼 × 2o ) )
43 36 42 syl ( 𝜑 → ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) = Word ( 𝐼 × 2o ) )
44 40 43 eqtr4d ( 𝜑𝑊 = ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) )
45 8 fvexi ∈ V
46 45 a1i ( 𝜑 ∈ V )
47 fvexd ( 𝜑 → ( freeMnd ‘ ( 𝐼 × 2o ) ) ∈ V )
48 33 44 46 47 qusbas ( 𝜑 → ( 𝑊 / ) = ( Base ‘ 𝐺 ) )
49 10 48 eqtr4id ( 𝜑𝑋 = ( 𝑊 / ) )
50 49 feq2d ( 𝜑 → ( 𝐸 : 𝑋𝐵𝐸 : ( 𝑊 / ) ⟶ 𝐵 ) )
51 30 50 mpbird ( 𝜑𝐸 : 𝑋𝐵 )