Metamath Proof Explorer


Theorem frgpuplem

Description: Any assignment of the generators to target elements can be extended (uniquely) to a homomorphism from a free monoid to an arbitrary other monoid. (Contributed by Mario Carneiro, 2-Oct-2015)

Ref Expression
Hypotheses frgpup.b 𝐵 = ( Base ‘ 𝐻 )
frgpup.n 𝑁 = ( invg𝐻 )
frgpup.t 𝑇 = ( 𝑦𝐼 , 𝑧 ∈ 2o ↦ if ( 𝑧 = ∅ , ( 𝐹𝑦 ) , ( 𝑁 ‘ ( 𝐹𝑦 ) ) ) )
frgpup.h ( 𝜑𝐻 ∈ Grp )
frgpup.i ( 𝜑𝐼𝑉 )
frgpup.a ( 𝜑𝐹 : 𝐼𝐵 )
frgpup.w 𝑊 = ( I ‘ Word ( 𝐼 × 2o ) )
frgpup.r = ( ~FG𝐼 )
Assertion frgpuplem ( ( 𝜑𝐴 𝐶 ) → ( 𝐻 Σg ( 𝑇𝐴 ) ) = ( 𝐻 Σg ( 𝑇𝐶 ) ) )

Proof

Step Hyp Ref Expression
1 frgpup.b 𝐵 = ( Base ‘ 𝐻 )
2 frgpup.n 𝑁 = ( invg𝐻 )
3 frgpup.t 𝑇 = ( 𝑦𝐼 , 𝑧 ∈ 2o ↦ if ( 𝑧 = ∅ , ( 𝐹𝑦 ) , ( 𝑁 ‘ ( 𝐹𝑦 ) ) ) )
4 frgpup.h ( 𝜑𝐻 ∈ Grp )
5 frgpup.i ( 𝜑𝐼𝑉 )
6 frgpup.a ( 𝜑𝐹 : 𝐼𝐵 )
7 frgpup.w 𝑊 = ( I ‘ Word ( 𝐼 × 2o ) )
8 frgpup.r = ( ~FG𝐼 )
9 7 8 efgval = { 𝑟 ∣ ( 𝑟 Er 𝑊 ∧ ∀ 𝑥𝑊𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ∀ 𝑎𝐼𝑏 ∈ 2o 𝑥 𝑟 ( 𝑥 splice ⟨ 𝑛 , 𝑛 , ⟨“ ⟨ 𝑎 , 𝑏 ⟩ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ”⟩ ⟩ ) ) }
10 coeq2 ( 𝑢 = 𝑣 → ( 𝑇𝑢 ) = ( 𝑇𝑣 ) )
11 10 oveq2d ( 𝑢 = 𝑣 → ( 𝐻 Σg ( 𝑇𝑢 ) ) = ( 𝐻 Σg ( 𝑇𝑣 ) ) )
12 eqid { ⟨ 𝑢 , 𝑣 ⟩ ∣ ( 𝐻 Σg ( 𝑇𝑢 ) ) = ( 𝐻 Σg ( 𝑇𝑣 ) ) } = { ⟨ 𝑢 , 𝑣 ⟩ ∣ ( 𝐻 Σg ( 𝑇𝑢 ) ) = ( 𝐻 Σg ( 𝑇𝑣 ) ) }
13 11 12 eqer { ⟨ 𝑢 , 𝑣 ⟩ ∣ ( 𝐻 Σg ( 𝑇𝑢 ) ) = ( 𝐻 Σg ( 𝑇𝑣 ) ) } Er V
14 13 a1i ( 𝜑 → { ⟨ 𝑢 , 𝑣 ⟩ ∣ ( 𝐻 Σg ( 𝑇𝑢 ) ) = ( 𝐻 Σg ( 𝑇𝑣 ) ) } Er V )
15 ssv 𝑊 ⊆ V
16 15 a1i ( 𝜑𝑊 ⊆ V )
17 14 16 erinxp ( 𝜑 → ( { ⟨ 𝑢 , 𝑣 ⟩ ∣ ( 𝐻 Σg ( 𝑇𝑢 ) ) = ( 𝐻 Σg ( 𝑇𝑣 ) ) } ∩ ( 𝑊 × 𝑊 ) ) Er 𝑊 )
18 df-xp ( 𝑊 × 𝑊 ) = { ⟨ 𝑢 , 𝑣 ⟩ ∣ ( 𝑢𝑊𝑣𝑊 ) }
19 18 ineq1i ( ( 𝑊 × 𝑊 ) ∩ { ⟨ 𝑢 , 𝑣 ⟩ ∣ ( 𝐻 Σg ( 𝑇𝑢 ) ) = ( 𝐻 Σg ( 𝑇𝑣 ) ) } ) = ( { ⟨ 𝑢 , 𝑣 ⟩ ∣ ( 𝑢𝑊𝑣𝑊 ) } ∩ { ⟨ 𝑢 , 𝑣 ⟩ ∣ ( 𝐻 Σg ( 𝑇𝑢 ) ) = ( 𝐻 Σg ( 𝑇𝑣 ) ) } )
20 incom ( ( 𝑊 × 𝑊 ) ∩ { ⟨ 𝑢 , 𝑣 ⟩ ∣ ( 𝐻 Σg ( 𝑇𝑢 ) ) = ( 𝐻 Σg ( 𝑇𝑣 ) ) } ) = ( { ⟨ 𝑢 , 𝑣 ⟩ ∣ ( 𝐻 Σg ( 𝑇𝑢 ) ) = ( 𝐻 Σg ( 𝑇𝑣 ) ) } ∩ ( 𝑊 × 𝑊 ) )
21 inopab ( { ⟨ 𝑢 , 𝑣 ⟩ ∣ ( 𝑢𝑊𝑣𝑊 ) } ∩ { ⟨ 𝑢 , 𝑣 ⟩ ∣ ( 𝐻 Σg ( 𝑇𝑢 ) ) = ( 𝐻 Σg ( 𝑇𝑣 ) ) } ) = { ⟨ 𝑢 , 𝑣 ⟩ ∣ ( ( 𝑢𝑊𝑣𝑊 ) ∧ ( 𝐻 Σg ( 𝑇𝑢 ) ) = ( 𝐻 Σg ( 𝑇𝑣 ) ) ) }
22 19 20 21 3eqtr3i ( { ⟨ 𝑢 , 𝑣 ⟩ ∣ ( 𝐻 Σg ( 𝑇𝑢 ) ) = ( 𝐻 Σg ( 𝑇𝑣 ) ) } ∩ ( 𝑊 × 𝑊 ) ) = { ⟨ 𝑢 , 𝑣 ⟩ ∣ ( ( 𝑢𝑊𝑣𝑊 ) ∧ ( 𝐻 Σg ( 𝑇𝑢 ) ) = ( 𝐻 Σg ( 𝑇𝑣 ) ) ) }
23 vex 𝑢 ∈ V
24 vex 𝑣 ∈ V
25 23 24 prss ( ( 𝑢𝑊𝑣𝑊 ) ↔ { 𝑢 , 𝑣 } ⊆ 𝑊 )
26 25 anbi1i ( ( ( 𝑢𝑊𝑣𝑊 ) ∧ ( 𝐻 Σg ( 𝑇𝑢 ) ) = ( 𝐻 Σg ( 𝑇𝑣 ) ) ) ↔ ( { 𝑢 , 𝑣 } ⊆ 𝑊 ∧ ( 𝐻 Σg ( 𝑇𝑢 ) ) = ( 𝐻 Σg ( 𝑇𝑣 ) ) ) )
27 26 opabbii { ⟨ 𝑢 , 𝑣 ⟩ ∣ ( ( 𝑢𝑊𝑣𝑊 ) ∧ ( 𝐻 Σg ( 𝑇𝑢 ) ) = ( 𝐻 Σg ( 𝑇𝑣 ) ) ) } = { ⟨ 𝑢 , 𝑣 ⟩ ∣ ( { 𝑢 , 𝑣 } ⊆ 𝑊 ∧ ( 𝐻 Σg ( 𝑇𝑢 ) ) = ( 𝐻 Σg ( 𝑇𝑣 ) ) ) }
28 22 27 eqtri ( { ⟨ 𝑢 , 𝑣 ⟩ ∣ ( 𝐻 Σg ( 𝑇𝑢 ) ) = ( 𝐻 Σg ( 𝑇𝑣 ) ) } ∩ ( 𝑊 × 𝑊 ) ) = { ⟨ 𝑢 , 𝑣 ⟩ ∣ ( { 𝑢 , 𝑣 } ⊆ 𝑊 ∧ ( 𝐻 Σg ( 𝑇𝑢 ) ) = ( 𝐻 Σg ( 𝑇𝑣 ) ) ) }
29 ereq1 ( ( { ⟨ 𝑢 , 𝑣 ⟩ ∣ ( 𝐻 Σg ( 𝑇𝑢 ) ) = ( 𝐻 Σg ( 𝑇𝑣 ) ) } ∩ ( 𝑊 × 𝑊 ) ) = { ⟨ 𝑢 , 𝑣 ⟩ ∣ ( { 𝑢 , 𝑣 } ⊆ 𝑊 ∧ ( 𝐻 Σg ( 𝑇𝑢 ) ) = ( 𝐻 Σg ( 𝑇𝑣 ) ) ) } → ( ( { ⟨ 𝑢 , 𝑣 ⟩ ∣ ( 𝐻 Σg ( 𝑇𝑢 ) ) = ( 𝐻 Σg ( 𝑇𝑣 ) ) } ∩ ( 𝑊 × 𝑊 ) ) Er 𝑊 ↔ { ⟨ 𝑢 , 𝑣 ⟩ ∣ ( { 𝑢 , 𝑣 } ⊆ 𝑊 ∧ ( 𝐻 Σg ( 𝑇𝑢 ) ) = ( 𝐻 Σg ( 𝑇𝑣 ) ) ) } Er 𝑊 ) )
30 28 29 ax-mp ( ( { ⟨ 𝑢 , 𝑣 ⟩ ∣ ( 𝐻 Σg ( 𝑇𝑢 ) ) = ( 𝐻 Σg ( 𝑇𝑣 ) ) } ∩ ( 𝑊 × 𝑊 ) ) Er 𝑊 ↔ { ⟨ 𝑢 , 𝑣 ⟩ ∣ ( { 𝑢 , 𝑣 } ⊆ 𝑊 ∧ ( 𝐻 Σg ( 𝑇𝑢 ) ) = ( 𝐻 Σg ( 𝑇𝑣 ) ) ) } Er 𝑊 )
31 17 30 sylib ( 𝜑 → { ⟨ 𝑢 , 𝑣 ⟩ ∣ ( { 𝑢 , 𝑣 } ⊆ 𝑊 ∧ ( 𝐻 Σg ( 𝑇𝑢 ) ) = ( 𝐻 Σg ( 𝑇𝑣 ) ) ) } Er 𝑊 )
32 simplrl ( ( ( 𝜑 ∧ ( 𝑥𝑊𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ) ) ∧ ( 𝑎𝐼𝑏 ∈ 2o ) ) → 𝑥𝑊 )
33 fviss ( I ‘ Word ( 𝐼 × 2o ) ) ⊆ Word ( 𝐼 × 2o )
34 7 33 eqsstri 𝑊 ⊆ Word ( 𝐼 × 2o )
35 34 32 sselid ( ( ( 𝜑 ∧ ( 𝑥𝑊𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ) ) ∧ ( 𝑎𝐼𝑏 ∈ 2o ) ) → 𝑥 ∈ Word ( 𝐼 × 2o ) )
36 opelxpi ( ( 𝑎𝐼𝑏 ∈ 2o ) → ⟨ 𝑎 , 𝑏 ⟩ ∈ ( 𝐼 × 2o ) )
37 36 adantl ( ( ( 𝜑 ∧ ( 𝑥𝑊𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ) ) ∧ ( 𝑎𝐼𝑏 ∈ 2o ) ) → ⟨ 𝑎 , 𝑏 ⟩ ∈ ( 𝐼 × 2o ) )
38 simprl ( ( ( 𝜑 ∧ ( 𝑥𝑊𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ) ) ∧ ( 𝑎𝐼𝑏 ∈ 2o ) ) → 𝑎𝐼 )
39 2oconcl ( 𝑏 ∈ 2o → ( 1o𝑏 ) ∈ 2o )
40 39 ad2antll ( ( ( 𝜑 ∧ ( 𝑥𝑊𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ) ) ∧ ( 𝑎𝐼𝑏 ∈ 2o ) ) → ( 1o𝑏 ) ∈ 2o )
41 38 40 opelxpd ( ( ( 𝜑 ∧ ( 𝑥𝑊𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ) ) ∧ ( 𝑎𝐼𝑏 ∈ 2o ) ) → ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ∈ ( 𝐼 × 2o ) )
42 37 41 s2cld ( ( ( 𝜑 ∧ ( 𝑥𝑊𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ) ) ∧ ( 𝑎𝐼𝑏 ∈ 2o ) ) → ⟨“ ⟨ 𝑎 , 𝑏 ⟩ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ”⟩ ∈ Word ( 𝐼 × 2o ) )
43 splcl ( ( 𝑥 ∈ Word ( 𝐼 × 2o ) ∧ ⟨“ ⟨ 𝑎 , 𝑏 ⟩ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ”⟩ ∈ Word ( 𝐼 × 2o ) ) → ( 𝑥 splice ⟨ 𝑛 , 𝑛 , ⟨“ ⟨ 𝑎 , 𝑏 ⟩ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ”⟩ ⟩ ) ∈ Word ( 𝐼 × 2o ) )
44 35 42 43 syl2anc ( ( ( 𝜑 ∧ ( 𝑥𝑊𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ) ) ∧ ( 𝑎𝐼𝑏 ∈ 2o ) ) → ( 𝑥 splice ⟨ 𝑛 , 𝑛 , ⟨“ ⟨ 𝑎 , 𝑏 ⟩ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ”⟩ ⟩ ) ∈ Word ( 𝐼 × 2o ) )
45 7 efgrcl ( 𝑥𝑊 → ( 𝐼 ∈ V ∧ 𝑊 = Word ( 𝐼 × 2o ) ) )
46 32 45 syl ( ( ( 𝜑 ∧ ( 𝑥𝑊𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ) ) ∧ ( 𝑎𝐼𝑏 ∈ 2o ) ) → ( 𝐼 ∈ V ∧ 𝑊 = Word ( 𝐼 × 2o ) ) )
47 46 simprd ( ( ( 𝜑 ∧ ( 𝑥𝑊𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ) ) ∧ ( 𝑎𝐼𝑏 ∈ 2o ) ) → 𝑊 = Word ( 𝐼 × 2o ) )
48 44 47 eleqtrrd ( ( ( 𝜑 ∧ ( 𝑥𝑊𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ) ) ∧ ( 𝑎𝐼𝑏 ∈ 2o ) ) → ( 𝑥 splice ⟨ 𝑛 , 𝑛 , ⟨“ ⟨ 𝑎 , 𝑏 ⟩ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ”⟩ ⟩ ) ∈ 𝑊 )
49 pfxcl ( 𝑥 ∈ Word ( 𝐼 × 2o ) → ( 𝑥 prefix 𝑛 ) ∈ Word ( 𝐼 × 2o ) )
50 35 49 syl ( ( ( 𝜑 ∧ ( 𝑥𝑊𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ) ) ∧ ( 𝑎𝐼𝑏 ∈ 2o ) ) → ( 𝑥 prefix 𝑛 ) ∈ Word ( 𝐼 × 2o ) )
51 1 2 3 4 5 6 frgpuptf ( 𝜑𝑇 : ( 𝐼 × 2o ) ⟶ 𝐵 )
52 51 ad2antrr ( ( ( 𝜑 ∧ ( 𝑥𝑊𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ) ) ∧ ( 𝑎𝐼𝑏 ∈ 2o ) ) → 𝑇 : ( 𝐼 × 2o ) ⟶ 𝐵 )
53 ccatco ( ( ( 𝑥 prefix 𝑛 ) ∈ Word ( 𝐼 × 2o ) ∧ ⟨“ ⟨ 𝑎 , 𝑏 ⟩ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ”⟩ ∈ Word ( 𝐼 × 2o ) ∧ 𝑇 : ( 𝐼 × 2o ) ⟶ 𝐵 ) → ( 𝑇 ∘ ( ( 𝑥 prefix 𝑛 ) ++ ⟨“ ⟨ 𝑎 , 𝑏 ⟩ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ”⟩ ) ) = ( ( 𝑇 ∘ ( 𝑥 prefix 𝑛 ) ) ++ ( 𝑇 ∘ ⟨“ ⟨ 𝑎 , 𝑏 ⟩ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ”⟩ ) ) )
54 50 42 52 53 syl3anc ( ( ( 𝜑 ∧ ( 𝑥𝑊𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ) ) ∧ ( 𝑎𝐼𝑏 ∈ 2o ) ) → ( 𝑇 ∘ ( ( 𝑥 prefix 𝑛 ) ++ ⟨“ ⟨ 𝑎 , 𝑏 ⟩ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ”⟩ ) ) = ( ( 𝑇 ∘ ( 𝑥 prefix 𝑛 ) ) ++ ( 𝑇 ∘ ⟨“ ⟨ 𝑎 , 𝑏 ⟩ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ”⟩ ) ) )
55 54 oveq2d ( ( ( 𝜑 ∧ ( 𝑥𝑊𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ) ) ∧ ( 𝑎𝐼𝑏 ∈ 2o ) ) → ( 𝐻 Σg ( 𝑇 ∘ ( ( 𝑥 prefix 𝑛 ) ++ ⟨“ ⟨ 𝑎 , 𝑏 ⟩ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ”⟩ ) ) ) = ( 𝐻 Σg ( ( 𝑇 ∘ ( 𝑥 prefix 𝑛 ) ) ++ ( 𝑇 ∘ ⟨“ ⟨ 𝑎 , 𝑏 ⟩ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ”⟩ ) ) ) )
56 4 ad2antrr ( ( ( 𝜑 ∧ ( 𝑥𝑊𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ) ) ∧ ( 𝑎𝐼𝑏 ∈ 2o ) ) → 𝐻 ∈ Grp )
57 56 grpmndd ( ( ( 𝜑 ∧ ( 𝑥𝑊𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ) ) ∧ ( 𝑎𝐼𝑏 ∈ 2o ) ) → 𝐻 ∈ Mnd )
58 wrdco ( ( ( 𝑥 prefix 𝑛 ) ∈ Word ( 𝐼 × 2o ) ∧ 𝑇 : ( 𝐼 × 2o ) ⟶ 𝐵 ) → ( 𝑇 ∘ ( 𝑥 prefix 𝑛 ) ) ∈ Word 𝐵 )
59 50 52 58 syl2anc ( ( ( 𝜑 ∧ ( 𝑥𝑊𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ) ) ∧ ( 𝑎𝐼𝑏 ∈ 2o ) ) → ( 𝑇 ∘ ( 𝑥 prefix 𝑛 ) ) ∈ Word 𝐵 )
60 wrdco ( ( ⟨“ ⟨ 𝑎 , 𝑏 ⟩ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ”⟩ ∈ Word ( 𝐼 × 2o ) ∧ 𝑇 : ( 𝐼 × 2o ) ⟶ 𝐵 ) → ( 𝑇 ∘ ⟨“ ⟨ 𝑎 , 𝑏 ⟩ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ”⟩ ) ∈ Word 𝐵 )
61 42 52 60 syl2anc ( ( ( 𝜑 ∧ ( 𝑥𝑊𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ) ) ∧ ( 𝑎𝐼𝑏 ∈ 2o ) ) → ( 𝑇 ∘ ⟨“ ⟨ 𝑎 , 𝑏 ⟩ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ”⟩ ) ∈ Word 𝐵 )
62 eqid ( +g𝐻 ) = ( +g𝐻 )
63 1 62 gsumccat ( ( 𝐻 ∈ Mnd ∧ ( 𝑇 ∘ ( 𝑥 prefix 𝑛 ) ) ∈ Word 𝐵 ∧ ( 𝑇 ∘ ⟨“ ⟨ 𝑎 , 𝑏 ⟩ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ”⟩ ) ∈ Word 𝐵 ) → ( 𝐻 Σg ( ( 𝑇 ∘ ( 𝑥 prefix 𝑛 ) ) ++ ( 𝑇 ∘ ⟨“ ⟨ 𝑎 , 𝑏 ⟩ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ”⟩ ) ) ) = ( ( 𝐻 Σg ( 𝑇 ∘ ( 𝑥 prefix 𝑛 ) ) ) ( +g𝐻 ) ( 𝐻 Σg ( 𝑇 ∘ ⟨“ ⟨ 𝑎 , 𝑏 ⟩ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ”⟩ ) ) ) )
64 57 59 61 63 syl3anc ( ( ( 𝜑 ∧ ( 𝑥𝑊𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ) ) ∧ ( 𝑎𝐼𝑏 ∈ 2o ) ) → ( 𝐻 Σg ( ( 𝑇 ∘ ( 𝑥 prefix 𝑛 ) ) ++ ( 𝑇 ∘ ⟨“ ⟨ 𝑎 , 𝑏 ⟩ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ”⟩ ) ) ) = ( ( 𝐻 Σg ( 𝑇 ∘ ( 𝑥 prefix 𝑛 ) ) ) ( +g𝐻 ) ( 𝐻 Σg ( 𝑇 ∘ ⟨“ ⟨ 𝑎 , 𝑏 ⟩ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ”⟩ ) ) ) )
65 52 37 41 s2co ( ( ( 𝜑 ∧ ( 𝑥𝑊𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ) ) ∧ ( 𝑎𝐼𝑏 ∈ 2o ) ) → ( 𝑇 ∘ ⟨“ ⟨ 𝑎 , 𝑏 ⟩ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ”⟩ ) = ⟨“ ( 𝑇 ‘ ⟨ 𝑎 , 𝑏 ⟩ ) ( 𝑇 ‘ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ) ”⟩ )
66 df-ov ( 𝑎 𝑇 𝑏 ) = ( 𝑇 ‘ ⟨ 𝑎 , 𝑏 ⟩ )
67 66 a1i ( ( ( 𝜑 ∧ ( 𝑥𝑊𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ) ) ∧ ( 𝑎𝐼𝑏 ∈ 2o ) ) → ( 𝑎 𝑇 𝑏 ) = ( 𝑇 ‘ ⟨ 𝑎 , 𝑏 ⟩ ) )
68 66 fveq2i ( 𝑁 ‘ ( 𝑎 𝑇 𝑏 ) ) = ( 𝑁 ‘ ( 𝑇 ‘ ⟨ 𝑎 , 𝑏 ⟩ ) )
69 df-ov ( 𝑎 ( 𝑦𝐼 , 𝑧 ∈ 2o ↦ ⟨ 𝑦 , ( 1o𝑧 ) ⟩ ) 𝑏 ) = ( ( 𝑦𝐼 , 𝑧 ∈ 2o ↦ ⟨ 𝑦 , ( 1o𝑧 ) ⟩ ) ‘ ⟨ 𝑎 , 𝑏 ⟩ )
70 eqid ( 𝑦𝐼 , 𝑧 ∈ 2o ↦ ⟨ 𝑦 , ( 1o𝑧 ) ⟩ ) = ( 𝑦𝐼 , 𝑧 ∈ 2o ↦ ⟨ 𝑦 , ( 1o𝑧 ) ⟩ )
71 70 efgmval ( ( 𝑎𝐼𝑏 ∈ 2o ) → ( 𝑎 ( 𝑦𝐼 , 𝑧 ∈ 2o ↦ ⟨ 𝑦 , ( 1o𝑧 ) ⟩ ) 𝑏 ) = ⟨ 𝑎 , ( 1o𝑏 ) ⟩ )
72 69 71 eqtr3id ( ( 𝑎𝐼𝑏 ∈ 2o ) → ( ( 𝑦𝐼 , 𝑧 ∈ 2o ↦ ⟨ 𝑦 , ( 1o𝑧 ) ⟩ ) ‘ ⟨ 𝑎 , 𝑏 ⟩ ) = ⟨ 𝑎 , ( 1o𝑏 ) ⟩ )
73 72 adantl ( ( ( 𝜑 ∧ ( 𝑥𝑊𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ) ) ∧ ( 𝑎𝐼𝑏 ∈ 2o ) ) → ( ( 𝑦𝐼 , 𝑧 ∈ 2o ↦ ⟨ 𝑦 , ( 1o𝑧 ) ⟩ ) ‘ ⟨ 𝑎 , 𝑏 ⟩ ) = ⟨ 𝑎 , ( 1o𝑏 ) ⟩ )
74 73 fveq2d ( ( ( 𝜑 ∧ ( 𝑥𝑊𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ) ) ∧ ( 𝑎𝐼𝑏 ∈ 2o ) ) → ( 𝑇 ‘ ( ( 𝑦𝐼 , 𝑧 ∈ 2o ↦ ⟨ 𝑦 , ( 1o𝑧 ) ⟩ ) ‘ ⟨ 𝑎 , 𝑏 ⟩ ) ) = ( 𝑇 ‘ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ) )
75 1 2 3 4 5 6 70 frgpuptinv ( ( 𝜑 ∧ ⟨ 𝑎 , 𝑏 ⟩ ∈ ( 𝐼 × 2o ) ) → ( 𝑇 ‘ ( ( 𝑦𝐼 , 𝑧 ∈ 2o ↦ ⟨ 𝑦 , ( 1o𝑧 ) ⟩ ) ‘ ⟨ 𝑎 , 𝑏 ⟩ ) ) = ( 𝑁 ‘ ( 𝑇 ‘ ⟨ 𝑎 , 𝑏 ⟩ ) ) )
76 36 75 sylan2 ( ( 𝜑 ∧ ( 𝑎𝐼𝑏 ∈ 2o ) ) → ( 𝑇 ‘ ( ( 𝑦𝐼 , 𝑧 ∈ 2o ↦ ⟨ 𝑦 , ( 1o𝑧 ) ⟩ ) ‘ ⟨ 𝑎 , 𝑏 ⟩ ) ) = ( 𝑁 ‘ ( 𝑇 ‘ ⟨ 𝑎 , 𝑏 ⟩ ) ) )
77 76 adantlr ( ( ( 𝜑 ∧ ( 𝑥𝑊𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ) ) ∧ ( 𝑎𝐼𝑏 ∈ 2o ) ) → ( 𝑇 ‘ ( ( 𝑦𝐼 , 𝑧 ∈ 2o ↦ ⟨ 𝑦 , ( 1o𝑧 ) ⟩ ) ‘ ⟨ 𝑎 , 𝑏 ⟩ ) ) = ( 𝑁 ‘ ( 𝑇 ‘ ⟨ 𝑎 , 𝑏 ⟩ ) ) )
78 74 77 eqtr3d ( ( ( 𝜑 ∧ ( 𝑥𝑊𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ) ) ∧ ( 𝑎𝐼𝑏 ∈ 2o ) ) → ( 𝑇 ‘ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ) = ( 𝑁 ‘ ( 𝑇 ‘ ⟨ 𝑎 , 𝑏 ⟩ ) ) )
79 68 78 eqtr4id ( ( ( 𝜑 ∧ ( 𝑥𝑊𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ) ) ∧ ( 𝑎𝐼𝑏 ∈ 2o ) ) → ( 𝑁 ‘ ( 𝑎 𝑇 𝑏 ) ) = ( 𝑇 ‘ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ) )
80 67 79 s2eqd ( ( ( 𝜑 ∧ ( 𝑥𝑊𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ) ) ∧ ( 𝑎𝐼𝑏 ∈ 2o ) ) → ⟨“ ( 𝑎 𝑇 𝑏 ) ( 𝑁 ‘ ( 𝑎 𝑇 𝑏 ) ) ”⟩ = ⟨“ ( 𝑇 ‘ ⟨ 𝑎 , 𝑏 ⟩ ) ( 𝑇 ‘ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ) ”⟩ )
81 65 80 eqtr4d ( ( ( 𝜑 ∧ ( 𝑥𝑊𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ) ) ∧ ( 𝑎𝐼𝑏 ∈ 2o ) ) → ( 𝑇 ∘ ⟨“ ⟨ 𝑎 , 𝑏 ⟩ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ”⟩ ) = ⟨“ ( 𝑎 𝑇 𝑏 ) ( 𝑁 ‘ ( 𝑎 𝑇 𝑏 ) ) ”⟩ )
82 81 oveq2d ( ( ( 𝜑 ∧ ( 𝑥𝑊𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ) ) ∧ ( 𝑎𝐼𝑏 ∈ 2o ) ) → ( 𝐻 Σg ( 𝑇 ∘ ⟨“ ⟨ 𝑎 , 𝑏 ⟩ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ”⟩ ) ) = ( 𝐻 Σg ⟨“ ( 𝑎 𝑇 𝑏 ) ( 𝑁 ‘ ( 𝑎 𝑇 𝑏 ) ) ”⟩ ) )
83 simprr ( ( ( 𝜑 ∧ ( 𝑥𝑊𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ) ) ∧ ( 𝑎𝐼𝑏 ∈ 2o ) ) → 𝑏 ∈ 2o )
84 52 38 83 fovrnd ( ( ( 𝜑 ∧ ( 𝑥𝑊𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ) ) ∧ ( 𝑎𝐼𝑏 ∈ 2o ) ) → ( 𝑎 𝑇 𝑏 ) ∈ 𝐵 )
85 1 2 grpinvcl ( ( 𝐻 ∈ Grp ∧ ( 𝑎 𝑇 𝑏 ) ∈ 𝐵 ) → ( 𝑁 ‘ ( 𝑎 𝑇 𝑏 ) ) ∈ 𝐵 )
86 56 84 85 syl2anc ( ( ( 𝜑 ∧ ( 𝑥𝑊𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ) ) ∧ ( 𝑎𝐼𝑏 ∈ 2o ) ) → ( 𝑁 ‘ ( 𝑎 𝑇 𝑏 ) ) ∈ 𝐵 )
87 1 62 gsumws2 ( ( 𝐻 ∈ Mnd ∧ ( 𝑎 𝑇 𝑏 ) ∈ 𝐵 ∧ ( 𝑁 ‘ ( 𝑎 𝑇 𝑏 ) ) ∈ 𝐵 ) → ( 𝐻 Σg ⟨“ ( 𝑎 𝑇 𝑏 ) ( 𝑁 ‘ ( 𝑎 𝑇 𝑏 ) ) ”⟩ ) = ( ( 𝑎 𝑇 𝑏 ) ( +g𝐻 ) ( 𝑁 ‘ ( 𝑎 𝑇 𝑏 ) ) ) )
88 57 84 86 87 syl3anc ( ( ( 𝜑 ∧ ( 𝑥𝑊𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ) ) ∧ ( 𝑎𝐼𝑏 ∈ 2o ) ) → ( 𝐻 Σg ⟨“ ( 𝑎 𝑇 𝑏 ) ( 𝑁 ‘ ( 𝑎 𝑇 𝑏 ) ) ”⟩ ) = ( ( 𝑎 𝑇 𝑏 ) ( +g𝐻 ) ( 𝑁 ‘ ( 𝑎 𝑇 𝑏 ) ) ) )
89 eqid ( 0g𝐻 ) = ( 0g𝐻 )
90 1 62 89 2 grprinv ( ( 𝐻 ∈ Grp ∧ ( 𝑎 𝑇 𝑏 ) ∈ 𝐵 ) → ( ( 𝑎 𝑇 𝑏 ) ( +g𝐻 ) ( 𝑁 ‘ ( 𝑎 𝑇 𝑏 ) ) ) = ( 0g𝐻 ) )
91 56 84 90 syl2anc ( ( ( 𝜑 ∧ ( 𝑥𝑊𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ) ) ∧ ( 𝑎𝐼𝑏 ∈ 2o ) ) → ( ( 𝑎 𝑇 𝑏 ) ( +g𝐻 ) ( 𝑁 ‘ ( 𝑎 𝑇 𝑏 ) ) ) = ( 0g𝐻 ) )
92 82 88 91 3eqtrd ( ( ( 𝜑 ∧ ( 𝑥𝑊𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ) ) ∧ ( 𝑎𝐼𝑏 ∈ 2o ) ) → ( 𝐻 Σg ( 𝑇 ∘ ⟨“ ⟨ 𝑎 , 𝑏 ⟩ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ”⟩ ) ) = ( 0g𝐻 ) )
93 92 oveq2d ( ( ( 𝜑 ∧ ( 𝑥𝑊𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ) ) ∧ ( 𝑎𝐼𝑏 ∈ 2o ) ) → ( ( 𝐻 Σg ( 𝑇 ∘ ( 𝑥 prefix 𝑛 ) ) ) ( +g𝐻 ) ( 𝐻 Σg ( 𝑇 ∘ ⟨“ ⟨ 𝑎 , 𝑏 ⟩ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ”⟩ ) ) ) = ( ( 𝐻 Σg ( 𝑇 ∘ ( 𝑥 prefix 𝑛 ) ) ) ( +g𝐻 ) ( 0g𝐻 ) ) )
94 1 gsumwcl ( ( 𝐻 ∈ Mnd ∧ ( 𝑇 ∘ ( 𝑥 prefix 𝑛 ) ) ∈ Word 𝐵 ) → ( 𝐻 Σg ( 𝑇 ∘ ( 𝑥 prefix 𝑛 ) ) ) ∈ 𝐵 )
95 57 59 94 syl2anc ( ( ( 𝜑 ∧ ( 𝑥𝑊𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ) ) ∧ ( 𝑎𝐼𝑏 ∈ 2o ) ) → ( 𝐻 Σg ( 𝑇 ∘ ( 𝑥 prefix 𝑛 ) ) ) ∈ 𝐵 )
96 1 62 89 grprid ( ( 𝐻 ∈ Grp ∧ ( 𝐻 Σg ( 𝑇 ∘ ( 𝑥 prefix 𝑛 ) ) ) ∈ 𝐵 ) → ( ( 𝐻 Σg ( 𝑇 ∘ ( 𝑥 prefix 𝑛 ) ) ) ( +g𝐻 ) ( 0g𝐻 ) ) = ( 𝐻 Σg ( 𝑇 ∘ ( 𝑥 prefix 𝑛 ) ) ) )
97 56 95 96 syl2anc ( ( ( 𝜑 ∧ ( 𝑥𝑊𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ) ) ∧ ( 𝑎𝐼𝑏 ∈ 2o ) ) → ( ( 𝐻 Σg ( 𝑇 ∘ ( 𝑥 prefix 𝑛 ) ) ) ( +g𝐻 ) ( 0g𝐻 ) ) = ( 𝐻 Σg ( 𝑇 ∘ ( 𝑥 prefix 𝑛 ) ) ) )
98 93 97 eqtrd ( ( ( 𝜑 ∧ ( 𝑥𝑊𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ) ) ∧ ( 𝑎𝐼𝑏 ∈ 2o ) ) → ( ( 𝐻 Σg ( 𝑇 ∘ ( 𝑥 prefix 𝑛 ) ) ) ( +g𝐻 ) ( 𝐻 Σg ( 𝑇 ∘ ⟨“ ⟨ 𝑎 , 𝑏 ⟩ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ”⟩ ) ) ) = ( 𝐻 Σg ( 𝑇 ∘ ( 𝑥 prefix 𝑛 ) ) ) )
99 55 64 98 3eqtrrd ( ( ( 𝜑 ∧ ( 𝑥𝑊𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ) ) ∧ ( 𝑎𝐼𝑏 ∈ 2o ) ) → ( 𝐻 Σg ( 𝑇 ∘ ( 𝑥 prefix 𝑛 ) ) ) = ( 𝐻 Σg ( 𝑇 ∘ ( ( 𝑥 prefix 𝑛 ) ++ ⟨“ ⟨ 𝑎 , 𝑏 ⟩ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ”⟩ ) ) ) )
100 99 oveq1d ( ( ( 𝜑 ∧ ( 𝑥𝑊𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ) ) ∧ ( 𝑎𝐼𝑏 ∈ 2o ) ) → ( ( 𝐻 Σg ( 𝑇 ∘ ( 𝑥 prefix 𝑛 ) ) ) ( +g𝐻 ) ( 𝐻 Σg ( 𝑇 ∘ ( 𝑥 substr ⟨ 𝑛 , ( ♯ ‘ 𝑥 ) ⟩ ) ) ) ) = ( ( 𝐻 Σg ( 𝑇 ∘ ( ( 𝑥 prefix 𝑛 ) ++ ⟨“ ⟨ 𝑎 , 𝑏 ⟩ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ”⟩ ) ) ) ( +g𝐻 ) ( 𝐻 Σg ( 𝑇 ∘ ( 𝑥 substr ⟨ 𝑛 , ( ♯ ‘ 𝑥 ) ⟩ ) ) ) ) )
101 swrdcl ( 𝑥 ∈ Word ( 𝐼 × 2o ) → ( 𝑥 substr ⟨ 𝑛 , ( ♯ ‘ 𝑥 ) ⟩ ) ∈ Word ( 𝐼 × 2o ) )
102 35 101 syl ( ( ( 𝜑 ∧ ( 𝑥𝑊𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ) ) ∧ ( 𝑎𝐼𝑏 ∈ 2o ) ) → ( 𝑥 substr ⟨ 𝑛 , ( ♯ ‘ 𝑥 ) ⟩ ) ∈ Word ( 𝐼 × 2o ) )
103 wrdco ( ( ( 𝑥 substr ⟨ 𝑛 , ( ♯ ‘ 𝑥 ) ⟩ ) ∈ Word ( 𝐼 × 2o ) ∧ 𝑇 : ( 𝐼 × 2o ) ⟶ 𝐵 ) → ( 𝑇 ∘ ( 𝑥 substr ⟨ 𝑛 , ( ♯ ‘ 𝑥 ) ⟩ ) ) ∈ Word 𝐵 )
104 102 52 103 syl2anc ( ( ( 𝜑 ∧ ( 𝑥𝑊𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ) ) ∧ ( 𝑎𝐼𝑏 ∈ 2o ) ) → ( 𝑇 ∘ ( 𝑥 substr ⟨ 𝑛 , ( ♯ ‘ 𝑥 ) ⟩ ) ) ∈ Word 𝐵 )
105 1 62 gsumccat ( ( 𝐻 ∈ Mnd ∧ ( 𝑇 ∘ ( 𝑥 prefix 𝑛 ) ) ∈ Word 𝐵 ∧ ( 𝑇 ∘ ( 𝑥 substr ⟨ 𝑛 , ( ♯ ‘ 𝑥 ) ⟩ ) ) ∈ Word 𝐵 ) → ( 𝐻 Σg ( ( 𝑇 ∘ ( 𝑥 prefix 𝑛 ) ) ++ ( 𝑇 ∘ ( 𝑥 substr ⟨ 𝑛 , ( ♯ ‘ 𝑥 ) ⟩ ) ) ) ) = ( ( 𝐻 Σg ( 𝑇 ∘ ( 𝑥 prefix 𝑛 ) ) ) ( +g𝐻 ) ( 𝐻 Σg ( 𝑇 ∘ ( 𝑥 substr ⟨ 𝑛 , ( ♯ ‘ 𝑥 ) ⟩ ) ) ) ) )
106 57 59 104 105 syl3anc ( ( ( 𝜑 ∧ ( 𝑥𝑊𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ) ) ∧ ( 𝑎𝐼𝑏 ∈ 2o ) ) → ( 𝐻 Σg ( ( 𝑇 ∘ ( 𝑥 prefix 𝑛 ) ) ++ ( 𝑇 ∘ ( 𝑥 substr ⟨ 𝑛 , ( ♯ ‘ 𝑥 ) ⟩ ) ) ) ) = ( ( 𝐻 Σg ( 𝑇 ∘ ( 𝑥 prefix 𝑛 ) ) ) ( +g𝐻 ) ( 𝐻 Σg ( 𝑇 ∘ ( 𝑥 substr ⟨ 𝑛 , ( ♯ ‘ 𝑥 ) ⟩ ) ) ) ) )
107 ccatcl ( ( ( 𝑥 prefix 𝑛 ) ∈ Word ( 𝐼 × 2o ) ∧ ⟨“ ⟨ 𝑎 , 𝑏 ⟩ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ”⟩ ∈ Word ( 𝐼 × 2o ) ) → ( ( 𝑥 prefix 𝑛 ) ++ ⟨“ ⟨ 𝑎 , 𝑏 ⟩ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ”⟩ ) ∈ Word ( 𝐼 × 2o ) )
108 50 42 107 syl2anc ( ( ( 𝜑 ∧ ( 𝑥𝑊𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ) ) ∧ ( 𝑎𝐼𝑏 ∈ 2o ) ) → ( ( 𝑥 prefix 𝑛 ) ++ ⟨“ ⟨ 𝑎 , 𝑏 ⟩ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ”⟩ ) ∈ Word ( 𝐼 × 2o ) )
109 wrdco ( ( ( ( 𝑥 prefix 𝑛 ) ++ ⟨“ ⟨ 𝑎 , 𝑏 ⟩ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ”⟩ ) ∈ Word ( 𝐼 × 2o ) ∧ 𝑇 : ( 𝐼 × 2o ) ⟶ 𝐵 ) → ( 𝑇 ∘ ( ( 𝑥 prefix 𝑛 ) ++ ⟨“ ⟨ 𝑎 , 𝑏 ⟩ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ”⟩ ) ) ∈ Word 𝐵 )
110 108 52 109 syl2anc ( ( ( 𝜑 ∧ ( 𝑥𝑊𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ) ) ∧ ( 𝑎𝐼𝑏 ∈ 2o ) ) → ( 𝑇 ∘ ( ( 𝑥 prefix 𝑛 ) ++ ⟨“ ⟨ 𝑎 , 𝑏 ⟩ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ”⟩ ) ) ∈ Word 𝐵 )
111 1 62 gsumccat ( ( 𝐻 ∈ Mnd ∧ ( 𝑇 ∘ ( ( 𝑥 prefix 𝑛 ) ++ ⟨“ ⟨ 𝑎 , 𝑏 ⟩ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ”⟩ ) ) ∈ Word 𝐵 ∧ ( 𝑇 ∘ ( 𝑥 substr ⟨ 𝑛 , ( ♯ ‘ 𝑥 ) ⟩ ) ) ∈ Word 𝐵 ) → ( 𝐻 Σg ( ( 𝑇 ∘ ( ( 𝑥 prefix 𝑛 ) ++ ⟨“ ⟨ 𝑎 , 𝑏 ⟩ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ”⟩ ) ) ++ ( 𝑇 ∘ ( 𝑥 substr ⟨ 𝑛 , ( ♯ ‘ 𝑥 ) ⟩ ) ) ) ) = ( ( 𝐻 Σg ( 𝑇 ∘ ( ( 𝑥 prefix 𝑛 ) ++ ⟨“ ⟨ 𝑎 , 𝑏 ⟩ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ”⟩ ) ) ) ( +g𝐻 ) ( 𝐻 Σg ( 𝑇 ∘ ( 𝑥 substr ⟨ 𝑛 , ( ♯ ‘ 𝑥 ) ⟩ ) ) ) ) )
112 57 110 104 111 syl3anc ( ( ( 𝜑 ∧ ( 𝑥𝑊𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ) ) ∧ ( 𝑎𝐼𝑏 ∈ 2o ) ) → ( 𝐻 Σg ( ( 𝑇 ∘ ( ( 𝑥 prefix 𝑛 ) ++ ⟨“ ⟨ 𝑎 , 𝑏 ⟩ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ”⟩ ) ) ++ ( 𝑇 ∘ ( 𝑥 substr ⟨ 𝑛 , ( ♯ ‘ 𝑥 ) ⟩ ) ) ) ) = ( ( 𝐻 Σg ( 𝑇 ∘ ( ( 𝑥 prefix 𝑛 ) ++ ⟨“ ⟨ 𝑎 , 𝑏 ⟩ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ”⟩ ) ) ) ( +g𝐻 ) ( 𝐻 Σg ( 𝑇 ∘ ( 𝑥 substr ⟨ 𝑛 , ( ♯ ‘ 𝑥 ) ⟩ ) ) ) ) )
113 100 106 112 3eqtr4d ( ( ( 𝜑 ∧ ( 𝑥𝑊𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ) ) ∧ ( 𝑎𝐼𝑏 ∈ 2o ) ) → ( 𝐻 Σg ( ( 𝑇 ∘ ( 𝑥 prefix 𝑛 ) ) ++ ( 𝑇 ∘ ( 𝑥 substr ⟨ 𝑛 , ( ♯ ‘ 𝑥 ) ⟩ ) ) ) ) = ( 𝐻 Σg ( ( 𝑇 ∘ ( ( 𝑥 prefix 𝑛 ) ++ ⟨“ ⟨ 𝑎 , 𝑏 ⟩ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ”⟩ ) ) ++ ( 𝑇 ∘ ( 𝑥 substr ⟨ 𝑛 , ( ♯ ‘ 𝑥 ) ⟩ ) ) ) ) )
114 simplrr ( ( ( 𝜑 ∧ ( 𝑥𝑊𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ) ) ∧ ( 𝑎𝐼𝑏 ∈ 2o ) ) → 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) )
115 lencl ( 𝑥 ∈ Word ( 𝐼 × 2o ) → ( ♯ ‘ 𝑥 ) ∈ ℕ0 )
116 35 115 syl ( ( ( 𝜑 ∧ ( 𝑥𝑊𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ) ) ∧ ( 𝑎𝐼𝑏 ∈ 2o ) ) → ( ♯ ‘ 𝑥 ) ∈ ℕ0 )
117 nn0uz 0 = ( ℤ ‘ 0 )
118 116 117 eleqtrdi ( ( ( 𝜑 ∧ ( 𝑥𝑊𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ) ) ∧ ( 𝑎𝐼𝑏 ∈ 2o ) ) → ( ♯ ‘ 𝑥 ) ∈ ( ℤ ‘ 0 ) )
119 eluzfz2 ( ( ♯ ‘ 𝑥 ) ∈ ( ℤ ‘ 0 ) → ( ♯ ‘ 𝑥 ) ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) )
120 118 119 syl ( ( ( 𝜑 ∧ ( 𝑥𝑊𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ) ) ∧ ( 𝑎𝐼𝑏 ∈ 2o ) ) → ( ♯ ‘ 𝑥 ) ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) )
121 ccatpfx ( ( 𝑥 ∈ Word ( 𝐼 × 2o ) ∧ 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ∧ ( ♯ ‘ 𝑥 ) ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ) → ( ( 𝑥 prefix 𝑛 ) ++ ( 𝑥 substr ⟨ 𝑛 , ( ♯ ‘ 𝑥 ) ⟩ ) ) = ( 𝑥 prefix ( ♯ ‘ 𝑥 ) ) )
122 35 114 120 121 syl3anc ( ( ( 𝜑 ∧ ( 𝑥𝑊𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ) ) ∧ ( 𝑎𝐼𝑏 ∈ 2o ) ) → ( ( 𝑥 prefix 𝑛 ) ++ ( 𝑥 substr ⟨ 𝑛 , ( ♯ ‘ 𝑥 ) ⟩ ) ) = ( 𝑥 prefix ( ♯ ‘ 𝑥 ) ) )
123 pfxid ( 𝑥 ∈ Word ( 𝐼 × 2o ) → ( 𝑥 prefix ( ♯ ‘ 𝑥 ) ) = 𝑥 )
124 35 123 syl ( ( ( 𝜑 ∧ ( 𝑥𝑊𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ) ) ∧ ( 𝑎𝐼𝑏 ∈ 2o ) ) → ( 𝑥 prefix ( ♯ ‘ 𝑥 ) ) = 𝑥 )
125 122 124 eqtrd ( ( ( 𝜑 ∧ ( 𝑥𝑊𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ) ) ∧ ( 𝑎𝐼𝑏 ∈ 2o ) ) → ( ( 𝑥 prefix 𝑛 ) ++ ( 𝑥 substr ⟨ 𝑛 , ( ♯ ‘ 𝑥 ) ⟩ ) ) = 𝑥 )
126 125 coeq2d ( ( ( 𝜑 ∧ ( 𝑥𝑊𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ) ) ∧ ( 𝑎𝐼𝑏 ∈ 2o ) ) → ( 𝑇 ∘ ( ( 𝑥 prefix 𝑛 ) ++ ( 𝑥 substr ⟨ 𝑛 , ( ♯ ‘ 𝑥 ) ⟩ ) ) ) = ( 𝑇𝑥 ) )
127 ccatco ( ( ( 𝑥 prefix 𝑛 ) ∈ Word ( 𝐼 × 2o ) ∧ ( 𝑥 substr ⟨ 𝑛 , ( ♯ ‘ 𝑥 ) ⟩ ) ∈ Word ( 𝐼 × 2o ) ∧ 𝑇 : ( 𝐼 × 2o ) ⟶ 𝐵 ) → ( 𝑇 ∘ ( ( 𝑥 prefix 𝑛 ) ++ ( 𝑥 substr ⟨ 𝑛 , ( ♯ ‘ 𝑥 ) ⟩ ) ) ) = ( ( 𝑇 ∘ ( 𝑥 prefix 𝑛 ) ) ++ ( 𝑇 ∘ ( 𝑥 substr ⟨ 𝑛 , ( ♯ ‘ 𝑥 ) ⟩ ) ) ) )
128 50 102 52 127 syl3anc ( ( ( 𝜑 ∧ ( 𝑥𝑊𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ) ) ∧ ( 𝑎𝐼𝑏 ∈ 2o ) ) → ( 𝑇 ∘ ( ( 𝑥 prefix 𝑛 ) ++ ( 𝑥 substr ⟨ 𝑛 , ( ♯ ‘ 𝑥 ) ⟩ ) ) ) = ( ( 𝑇 ∘ ( 𝑥 prefix 𝑛 ) ) ++ ( 𝑇 ∘ ( 𝑥 substr ⟨ 𝑛 , ( ♯ ‘ 𝑥 ) ⟩ ) ) ) )
129 126 128 eqtr3d ( ( ( 𝜑 ∧ ( 𝑥𝑊𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ) ) ∧ ( 𝑎𝐼𝑏 ∈ 2o ) ) → ( 𝑇𝑥 ) = ( ( 𝑇 ∘ ( 𝑥 prefix 𝑛 ) ) ++ ( 𝑇 ∘ ( 𝑥 substr ⟨ 𝑛 , ( ♯ ‘ 𝑥 ) ⟩ ) ) ) )
130 129 oveq2d ( ( ( 𝜑 ∧ ( 𝑥𝑊𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ) ) ∧ ( 𝑎𝐼𝑏 ∈ 2o ) ) → ( 𝐻 Σg ( 𝑇𝑥 ) ) = ( 𝐻 Σg ( ( 𝑇 ∘ ( 𝑥 prefix 𝑛 ) ) ++ ( 𝑇 ∘ ( 𝑥 substr ⟨ 𝑛 , ( ♯ ‘ 𝑥 ) ⟩ ) ) ) ) )
131 splval ( ( 𝑥𝑊 ∧ ( 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ∧ 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ∧ ⟨“ ⟨ 𝑎 , 𝑏 ⟩ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ”⟩ ∈ Word ( 𝐼 × 2o ) ) ) → ( 𝑥 splice ⟨ 𝑛 , 𝑛 , ⟨“ ⟨ 𝑎 , 𝑏 ⟩ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ”⟩ ⟩ ) = ( ( ( 𝑥 prefix 𝑛 ) ++ ⟨“ ⟨ 𝑎 , 𝑏 ⟩ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ”⟩ ) ++ ( 𝑥 substr ⟨ 𝑛 , ( ♯ ‘ 𝑥 ) ⟩ ) ) )
132 32 114 114 42 131 syl13anc ( ( ( 𝜑 ∧ ( 𝑥𝑊𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ) ) ∧ ( 𝑎𝐼𝑏 ∈ 2o ) ) → ( 𝑥 splice ⟨ 𝑛 , 𝑛 , ⟨“ ⟨ 𝑎 , 𝑏 ⟩ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ”⟩ ⟩ ) = ( ( ( 𝑥 prefix 𝑛 ) ++ ⟨“ ⟨ 𝑎 , 𝑏 ⟩ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ”⟩ ) ++ ( 𝑥 substr ⟨ 𝑛 , ( ♯ ‘ 𝑥 ) ⟩ ) ) )
133 132 coeq2d ( ( ( 𝜑 ∧ ( 𝑥𝑊𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ) ) ∧ ( 𝑎𝐼𝑏 ∈ 2o ) ) → ( 𝑇 ∘ ( 𝑥 splice ⟨ 𝑛 , 𝑛 , ⟨“ ⟨ 𝑎 , 𝑏 ⟩ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ”⟩ ⟩ ) ) = ( 𝑇 ∘ ( ( ( 𝑥 prefix 𝑛 ) ++ ⟨“ ⟨ 𝑎 , 𝑏 ⟩ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ”⟩ ) ++ ( 𝑥 substr ⟨ 𝑛 , ( ♯ ‘ 𝑥 ) ⟩ ) ) ) )
134 ccatco ( ( ( ( 𝑥 prefix 𝑛 ) ++ ⟨“ ⟨ 𝑎 , 𝑏 ⟩ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ”⟩ ) ∈ Word ( 𝐼 × 2o ) ∧ ( 𝑥 substr ⟨ 𝑛 , ( ♯ ‘ 𝑥 ) ⟩ ) ∈ Word ( 𝐼 × 2o ) ∧ 𝑇 : ( 𝐼 × 2o ) ⟶ 𝐵 ) → ( 𝑇 ∘ ( ( ( 𝑥 prefix 𝑛 ) ++ ⟨“ ⟨ 𝑎 , 𝑏 ⟩ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ”⟩ ) ++ ( 𝑥 substr ⟨ 𝑛 , ( ♯ ‘ 𝑥 ) ⟩ ) ) ) = ( ( 𝑇 ∘ ( ( 𝑥 prefix 𝑛 ) ++ ⟨“ ⟨ 𝑎 , 𝑏 ⟩ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ”⟩ ) ) ++ ( 𝑇 ∘ ( 𝑥 substr ⟨ 𝑛 , ( ♯ ‘ 𝑥 ) ⟩ ) ) ) )
135 108 102 52 134 syl3anc ( ( ( 𝜑 ∧ ( 𝑥𝑊𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ) ) ∧ ( 𝑎𝐼𝑏 ∈ 2o ) ) → ( 𝑇 ∘ ( ( ( 𝑥 prefix 𝑛 ) ++ ⟨“ ⟨ 𝑎 , 𝑏 ⟩ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ”⟩ ) ++ ( 𝑥 substr ⟨ 𝑛 , ( ♯ ‘ 𝑥 ) ⟩ ) ) ) = ( ( 𝑇 ∘ ( ( 𝑥 prefix 𝑛 ) ++ ⟨“ ⟨ 𝑎 , 𝑏 ⟩ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ”⟩ ) ) ++ ( 𝑇 ∘ ( 𝑥 substr ⟨ 𝑛 , ( ♯ ‘ 𝑥 ) ⟩ ) ) ) )
136 133 135 eqtrd ( ( ( 𝜑 ∧ ( 𝑥𝑊𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ) ) ∧ ( 𝑎𝐼𝑏 ∈ 2o ) ) → ( 𝑇 ∘ ( 𝑥 splice ⟨ 𝑛 , 𝑛 , ⟨“ ⟨ 𝑎 , 𝑏 ⟩ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ”⟩ ⟩ ) ) = ( ( 𝑇 ∘ ( ( 𝑥 prefix 𝑛 ) ++ ⟨“ ⟨ 𝑎 , 𝑏 ⟩ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ”⟩ ) ) ++ ( 𝑇 ∘ ( 𝑥 substr ⟨ 𝑛 , ( ♯ ‘ 𝑥 ) ⟩ ) ) ) )
137 136 oveq2d ( ( ( 𝜑 ∧ ( 𝑥𝑊𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ) ) ∧ ( 𝑎𝐼𝑏 ∈ 2o ) ) → ( 𝐻 Σg ( 𝑇 ∘ ( 𝑥 splice ⟨ 𝑛 , 𝑛 , ⟨“ ⟨ 𝑎 , 𝑏 ⟩ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ”⟩ ⟩ ) ) ) = ( 𝐻 Σg ( ( 𝑇 ∘ ( ( 𝑥 prefix 𝑛 ) ++ ⟨“ ⟨ 𝑎 , 𝑏 ⟩ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ”⟩ ) ) ++ ( 𝑇 ∘ ( 𝑥 substr ⟨ 𝑛 , ( ♯ ‘ 𝑥 ) ⟩ ) ) ) ) )
138 113 130 137 3eqtr4d ( ( ( 𝜑 ∧ ( 𝑥𝑊𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ) ) ∧ ( 𝑎𝐼𝑏 ∈ 2o ) ) → ( 𝐻 Σg ( 𝑇𝑥 ) ) = ( 𝐻 Σg ( 𝑇 ∘ ( 𝑥 splice ⟨ 𝑛 , 𝑛 , ⟨“ ⟨ 𝑎 , 𝑏 ⟩ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ”⟩ ⟩ ) ) ) )
139 vex 𝑥 ∈ V
140 ovex ( 𝑥 splice ⟨ 𝑛 , 𝑛 , ⟨“ ⟨ 𝑎 , 𝑏 ⟩ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ”⟩ ⟩ ) ∈ V
141 eleq1 ( 𝑢 = 𝑥 → ( 𝑢𝑊𝑥𝑊 ) )
142 eleq1 ( 𝑣 = ( 𝑥 splice ⟨ 𝑛 , 𝑛 , ⟨“ ⟨ 𝑎 , 𝑏 ⟩ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ”⟩ ⟩ ) → ( 𝑣𝑊 ↔ ( 𝑥 splice ⟨ 𝑛 , 𝑛 , ⟨“ ⟨ 𝑎 , 𝑏 ⟩ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ”⟩ ⟩ ) ∈ 𝑊 ) )
143 141 142 bi2anan9 ( ( 𝑢 = 𝑥𝑣 = ( 𝑥 splice ⟨ 𝑛 , 𝑛 , ⟨“ ⟨ 𝑎 , 𝑏 ⟩ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ”⟩ ⟩ ) ) → ( ( 𝑢𝑊𝑣𝑊 ) ↔ ( 𝑥𝑊 ∧ ( 𝑥 splice ⟨ 𝑛 , 𝑛 , ⟨“ ⟨ 𝑎 , 𝑏 ⟩ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ”⟩ ⟩ ) ∈ 𝑊 ) ) )
144 25 143 bitr3id ( ( 𝑢 = 𝑥𝑣 = ( 𝑥 splice ⟨ 𝑛 , 𝑛 , ⟨“ ⟨ 𝑎 , 𝑏 ⟩ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ”⟩ ⟩ ) ) → ( { 𝑢 , 𝑣 } ⊆ 𝑊 ↔ ( 𝑥𝑊 ∧ ( 𝑥 splice ⟨ 𝑛 , 𝑛 , ⟨“ ⟨ 𝑎 , 𝑏 ⟩ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ”⟩ ⟩ ) ∈ 𝑊 ) ) )
145 coeq2 ( 𝑢 = 𝑥 → ( 𝑇𝑢 ) = ( 𝑇𝑥 ) )
146 145 oveq2d ( 𝑢 = 𝑥 → ( 𝐻 Σg ( 𝑇𝑢 ) ) = ( 𝐻 Σg ( 𝑇𝑥 ) ) )
147 coeq2 ( 𝑣 = ( 𝑥 splice ⟨ 𝑛 , 𝑛 , ⟨“ ⟨ 𝑎 , 𝑏 ⟩ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ”⟩ ⟩ ) → ( 𝑇𝑣 ) = ( 𝑇 ∘ ( 𝑥 splice ⟨ 𝑛 , 𝑛 , ⟨“ ⟨ 𝑎 , 𝑏 ⟩ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ”⟩ ⟩ ) ) )
148 147 oveq2d ( 𝑣 = ( 𝑥 splice ⟨ 𝑛 , 𝑛 , ⟨“ ⟨ 𝑎 , 𝑏 ⟩ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ”⟩ ⟩ ) → ( 𝐻 Σg ( 𝑇𝑣 ) ) = ( 𝐻 Σg ( 𝑇 ∘ ( 𝑥 splice ⟨ 𝑛 , 𝑛 , ⟨“ ⟨ 𝑎 , 𝑏 ⟩ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ”⟩ ⟩ ) ) ) )
149 146 148 eqeqan12d ( ( 𝑢 = 𝑥𝑣 = ( 𝑥 splice ⟨ 𝑛 , 𝑛 , ⟨“ ⟨ 𝑎 , 𝑏 ⟩ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ”⟩ ⟩ ) ) → ( ( 𝐻 Σg ( 𝑇𝑢 ) ) = ( 𝐻 Σg ( 𝑇𝑣 ) ) ↔ ( 𝐻 Σg ( 𝑇𝑥 ) ) = ( 𝐻 Σg ( 𝑇 ∘ ( 𝑥 splice ⟨ 𝑛 , 𝑛 , ⟨“ ⟨ 𝑎 , 𝑏 ⟩ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ”⟩ ⟩ ) ) ) ) )
150 144 149 anbi12d ( ( 𝑢 = 𝑥𝑣 = ( 𝑥 splice ⟨ 𝑛 , 𝑛 , ⟨“ ⟨ 𝑎 , 𝑏 ⟩ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ”⟩ ⟩ ) ) → ( ( { 𝑢 , 𝑣 } ⊆ 𝑊 ∧ ( 𝐻 Σg ( 𝑇𝑢 ) ) = ( 𝐻 Σg ( 𝑇𝑣 ) ) ) ↔ ( ( 𝑥𝑊 ∧ ( 𝑥 splice ⟨ 𝑛 , 𝑛 , ⟨“ ⟨ 𝑎 , 𝑏 ⟩ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ”⟩ ⟩ ) ∈ 𝑊 ) ∧ ( 𝐻 Σg ( 𝑇𝑥 ) ) = ( 𝐻 Σg ( 𝑇 ∘ ( 𝑥 splice ⟨ 𝑛 , 𝑛 , ⟨“ ⟨ 𝑎 , 𝑏 ⟩ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ”⟩ ⟩ ) ) ) ) ) )
151 eqid { ⟨ 𝑢 , 𝑣 ⟩ ∣ ( { 𝑢 , 𝑣 } ⊆ 𝑊 ∧ ( 𝐻 Σg ( 𝑇𝑢 ) ) = ( 𝐻 Σg ( 𝑇𝑣 ) ) ) } = { ⟨ 𝑢 , 𝑣 ⟩ ∣ ( { 𝑢 , 𝑣 } ⊆ 𝑊 ∧ ( 𝐻 Σg ( 𝑇𝑢 ) ) = ( 𝐻 Σg ( 𝑇𝑣 ) ) ) }
152 139 140 150 151 braba ( 𝑥 { ⟨ 𝑢 , 𝑣 ⟩ ∣ ( { 𝑢 , 𝑣 } ⊆ 𝑊 ∧ ( 𝐻 Σg ( 𝑇𝑢 ) ) = ( 𝐻 Σg ( 𝑇𝑣 ) ) ) } ( 𝑥 splice ⟨ 𝑛 , 𝑛 , ⟨“ ⟨ 𝑎 , 𝑏 ⟩ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ”⟩ ⟩ ) ↔ ( ( 𝑥𝑊 ∧ ( 𝑥 splice ⟨ 𝑛 , 𝑛 , ⟨“ ⟨ 𝑎 , 𝑏 ⟩ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ”⟩ ⟩ ) ∈ 𝑊 ) ∧ ( 𝐻 Σg ( 𝑇𝑥 ) ) = ( 𝐻 Σg ( 𝑇 ∘ ( 𝑥 splice ⟨ 𝑛 , 𝑛 , ⟨“ ⟨ 𝑎 , 𝑏 ⟩ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ”⟩ ⟩ ) ) ) ) )
153 32 48 138 152 syl21anbrc ( ( ( 𝜑 ∧ ( 𝑥𝑊𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ) ) ∧ ( 𝑎𝐼𝑏 ∈ 2o ) ) → 𝑥 { ⟨ 𝑢 , 𝑣 ⟩ ∣ ( { 𝑢 , 𝑣 } ⊆ 𝑊 ∧ ( 𝐻 Σg ( 𝑇𝑢 ) ) = ( 𝐻 Σg ( 𝑇𝑣 ) ) ) } ( 𝑥 splice ⟨ 𝑛 , 𝑛 , ⟨“ ⟨ 𝑎 , 𝑏 ⟩ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ”⟩ ⟩ ) )
154 153 ralrimivva ( ( 𝜑 ∧ ( 𝑥𝑊𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ) ) → ∀ 𝑎𝐼𝑏 ∈ 2o 𝑥 { ⟨ 𝑢 , 𝑣 ⟩ ∣ ( { 𝑢 , 𝑣 } ⊆ 𝑊 ∧ ( 𝐻 Σg ( 𝑇𝑢 ) ) = ( 𝐻 Σg ( 𝑇𝑣 ) ) ) } ( 𝑥 splice ⟨ 𝑛 , 𝑛 , ⟨“ ⟨ 𝑎 , 𝑏 ⟩ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ”⟩ ⟩ ) )
155 154 ralrimivva ( 𝜑 → ∀ 𝑥𝑊𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ∀ 𝑎𝐼𝑏 ∈ 2o 𝑥 { ⟨ 𝑢 , 𝑣 ⟩ ∣ ( { 𝑢 , 𝑣 } ⊆ 𝑊 ∧ ( 𝐻 Σg ( 𝑇𝑢 ) ) = ( 𝐻 Σg ( 𝑇𝑣 ) ) ) } ( 𝑥 splice ⟨ 𝑛 , 𝑛 , ⟨“ ⟨ 𝑎 , 𝑏 ⟩ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ”⟩ ⟩ ) )
156 7 fvexi 𝑊 ∈ V
157 erex ( { ⟨ 𝑢 , 𝑣 ⟩ ∣ ( { 𝑢 , 𝑣 } ⊆ 𝑊 ∧ ( 𝐻 Σg ( 𝑇𝑢 ) ) = ( 𝐻 Σg ( 𝑇𝑣 ) ) ) } Er 𝑊 → ( 𝑊 ∈ V → { ⟨ 𝑢 , 𝑣 ⟩ ∣ ( { 𝑢 , 𝑣 } ⊆ 𝑊 ∧ ( 𝐻 Σg ( 𝑇𝑢 ) ) = ( 𝐻 Σg ( 𝑇𝑣 ) ) ) } ∈ V ) )
158 31 156 157 mpisyl ( 𝜑 → { ⟨ 𝑢 , 𝑣 ⟩ ∣ ( { 𝑢 , 𝑣 } ⊆ 𝑊 ∧ ( 𝐻 Σg ( 𝑇𝑢 ) ) = ( 𝐻 Σg ( 𝑇𝑣 ) ) ) } ∈ V )
159 ereq1 ( 𝑟 = { ⟨ 𝑢 , 𝑣 ⟩ ∣ ( { 𝑢 , 𝑣 } ⊆ 𝑊 ∧ ( 𝐻 Σg ( 𝑇𝑢 ) ) = ( 𝐻 Σg ( 𝑇𝑣 ) ) ) } → ( 𝑟 Er 𝑊 ↔ { ⟨ 𝑢 , 𝑣 ⟩ ∣ ( { 𝑢 , 𝑣 } ⊆ 𝑊 ∧ ( 𝐻 Σg ( 𝑇𝑢 ) ) = ( 𝐻 Σg ( 𝑇𝑣 ) ) ) } Er 𝑊 ) )
160 breq ( 𝑟 = { ⟨ 𝑢 , 𝑣 ⟩ ∣ ( { 𝑢 , 𝑣 } ⊆ 𝑊 ∧ ( 𝐻 Σg ( 𝑇𝑢 ) ) = ( 𝐻 Σg ( 𝑇𝑣 ) ) ) } → ( 𝑥 𝑟 ( 𝑥 splice ⟨ 𝑛 , 𝑛 , ⟨“ ⟨ 𝑎 , 𝑏 ⟩ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ”⟩ ⟩ ) ↔ 𝑥 { ⟨ 𝑢 , 𝑣 ⟩ ∣ ( { 𝑢 , 𝑣 } ⊆ 𝑊 ∧ ( 𝐻 Σg ( 𝑇𝑢 ) ) = ( 𝐻 Σg ( 𝑇𝑣 ) ) ) } ( 𝑥 splice ⟨ 𝑛 , 𝑛 , ⟨“ ⟨ 𝑎 , 𝑏 ⟩ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ”⟩ ⟩ ) ) )
161 160 2ralbidv ( 𝑟 = { ⟨ 𝑢 , 𝑣 ⟩ ∣ ( { 𝑢 , 𝑣 } ⊆ 𝑊 ∧ ( 𝐻 Σg ( 𝑇𝑢 ) ) = ( 𝐻 Σg ( 𝑇𝑣 ) ) ) } → ( ∀ 𝑎𝐼𝑏 ∈ 2o 𝑥 𝑟 ( 𝑥 splice ⟨ 𝑛 , 𝑛 , ⟨“ ⟨ 𝑎 , 𝑏 ⟩ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ”⟩ ⟩ ) ↔ ∀ 𝑎𝐼𝑏 ∈ 2o 𝑥 { ⟨ 𝑢 , 𝑣 ⟩ ∣ ( { 𝑢 , 𝑣 } ⊆ 𝑊 ∧ ( 𝐻 Σg ( 𝑇𝑢 ) ) = ( 𝐻 Σg ( 𝑇𝑣 ) ) ) } ( 𝑥 splice ⟨ 𝑛 , 𝑛 , ⟨“ ⟨ 𝑎 , 𝑏 ⟩ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ”⟩ ⟩ ) ) )
162 161 2ralbidv ( 𝑟 = { ⟨ 𝑢 , 𝑣 ⟩ ∣ ( { 𝑢 , 𝑣 } ⊆ 𝑊 ∧ ( 𝐻 Σg ( 𝑇𝑢 ) ) = ( 𝐻 Σg ( 𝑇𝑣 ) ) ) } → ( ∀ 𝑥𝑊𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ∀ 𝑎𝐼𝑏 ∈ 2o 𝑥 𝑟 ( 𝑥 splice ⟨ 𝑛 , 𝑛 , ⟨“ ⟨ 𝑎 , 𝑏 ⟩ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ”⟩ ⟩ ) ↔ ∀ 𝑥𝑊𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ∀ 𝑎𝐼𝑏 ∈ 2o 𝑥 { ⟨ 𝑢 , 𝑣 ⟩ ∣ ( { 𝑢 , 𝑣 } ⊆ 𝑊 ∧ ( 𝐻 Σg ( 𝑇𝑢 ) ) = ( 𝐻 Σg ( 𝑇𝑣 ) ) ) } ( 𝑥 splice ⟨ 𝑛 , 𝑛 , ⟨“ ⟨ 𝑎 , 𝑏 ⟩ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ”⟩ ⟩ ) ) )
163 159 162 anbi12d ( 𝑟 = { ⟨ 𝑢 , 𝑣 ⟩ ∣ ( { 𝑢 , 𝑣 } ⊆ 𝑊 ∧ ( 𝐻 Σg ( 𝑇𝑢 ) ) = ( 𝐻 Σg ( 𝑇𝑣 ) ) ) } → ( ( 𝑟 Er 𝑊 ∧ ∀ 𝑥𝑊𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ∀ 𝑎𝐼𝑏 ∈ 2o 𝑥 𝑟 ( 𝑥 splice ⟨ 𝑛 , 𝑛 , ⟨“ ⟨ 𝑎 , 𝑏 ⟩ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ”⟩ ⟩ ) ) ↔ ( { ⟨ 𝑢 , 𝑣 ⟩ ∣ ( { 𝑢 , 𝑣 } ⊆ 𝑊 ∧ ( 𝐻 Σg ( 𝑇𝑢 ) ) = ( 𝐻 Σg ( 𝑇𝑣 ) ) ) } Er 𝑊 ∧ ∀ 𝑥𝑊𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ∀ 𝑎𝐼𝑏 ∈ 2o 𝑥 { ⟨ 𝑢 , 𝑣 ⟩ ∣ ( { 𝑢 , 𝑣 } ⊆ 𝑊 ∧ ( 𝐻 Σg ( 𝑇𝑢 ) ) = ( 𝐻 Σg ( 𝑇𝑣 ) ) ) } ( 𝑥 splice ⟨ 𝑛 , 𝑛 , ⟨“ ⟨ 𝑎 , 𝑏 ⟩ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ”⟩ ⟩ ) ) ) )
164 163 elabg ( { ⟨ 𝑢 , 𝑣 ⟩ ∣ ( { 𝑢 , 𝑣 } ⊆ 𝑊 ∧ ( 𝐻 Σg ( 𝑇𝑢 ) ) = ( 𝐻 Σg ( 𝑇𝑣 ) ) ) } ∈ V → ( { ⟨ 𝑢 , 𝑣 ⟩ ∣ ( { 𝑢 , 𝑣 } ⊆ 𝑊 ∧ ( 𝐻 Σg ( 𝑇𝑢 ) ) = ( 𝐻 Σg ( 𝑇𝑣 ) ) ) } ∈ { 𝑟 ∣ ( 𝑟 Er 𝑊 ∧ ∀ 𝑥𝑊𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ∀ 𝑎𝐼𝑏 ∈ 2o 𝑥 𝑟 ( 𝑥 splice ⟨ 𝑛 , 𝑛 , ⟨“ ⟨ 𝑎 , 𝑏 ⟩ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ”⟩ ⟩ ) ) } ↔ ( { ⟨ 𝑢 , 𝑣 ⟩ ∣ ( { 𝑢 , 𝑣 } ⊆ 𝑊 ∧ ( 𝐻 Σg ( 𝑇𝑢 ) ) = ( 𝐻 Σg ( 𝑇𝑣 ) ) ) } Er 𝑊 ∧ ∀ 𝑥𝑊𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ∀ 𝑎𝐼𝑏 ∈ 2o 𝑥 { ⟨ 𝑢 , 𝑣 ⟩ ∣ ( { 𝑢 , 𝑣 } ⊆ 𝑊 ∧ ( 𝐻 Σg ( 𝑇𝑢 ) ) = ( 𝐻 Σg ( 𝑇𝑣 ) ) ) } ( 𝑥 splice ⟨ 𝑛 , 𝑛 , ⟨“ ⟨ 𝑎 , 𝑏 ⟩ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ”⟩ ⟩ ) ) ) )
165 158 164 syl ( 𝜑 → ( { ⟨ 𝑢 , 𝑣 ⟩ ∣ ( { 𝑢 , 𝑣 } ⊆ 𝑊 ∧ ( 𝐻 Σg ( 𝑇𝑢 ) ) = ( 𝐻 Σg ( 𝑇𝑣 ) ) ) } ∈ { 𝑟 ∣ ( 𝑟 Er 𝑊 ∧ ∀ 𝑥𝑊𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ∀ 𝑎𝐼𝑏 ∈ 2o 𝑥 𝑟 ( 𝑥 splice ⟨ 𝑛 , 𝑛 , ⟨“ ⟨ 𝑎 , 𝑏 ⟩ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ”⟩ ⟩ ) ) } ↔ ( { ⟨ 𝑢 , 𝑣 ⟩ ∣ ( { 𝑢 , 𝑣 } ⊆ 𝑊 ∧ ( 𝐻 Σg ( 𝑇𝑢 ) ) = ( 𝐻 Σg ( 𝑇𝑣 ) ) ) } Er 𝑊 ∧ ∀ 𝑥𝑊𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ∀ 𝑎𝐼𝑏 ∈ 2o 𝑥 { ⟨ 𝑢 , 𝑣 ⟩ ∣ ( { 𝑢 , 𝑣 } ⊆ 𝑊 ∧ ( 𝐻 Σg ( 𝑇𝑢 ) ) = ( 𝐻 Σg ( 𝑇𝑣 ) ) ) } ( 𝑥 splice ⟨ 𝑛 , 𝑛 , ⟨“ ⟨ 𝑎 , 𝑏 ⟩ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ”⟩ ⟩ ) ) ) )
166 31 155 165 mpbir2and ( 𝜑 → { ⟨ 𝑢 , 𝑣 ⟩ ∣ ( { 𝑢 , 𝑣 } ⊆ 𝑊 ∧ ( 𝐻 Σg ( 𝑇𝑢 ) ) = ( 𝐻 Σg ( 𝑇𝑣 ) ) ) } ∈ { 𝑟 ∣ ( 𝑟 Er 𝑊 ∧ ∀ 𝑥𝑊𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ∀ 𝑎𝐼𝑏 ∈ 2o 𝑥 𝑟 ( 𝑥 splice ⟨ 𝑛 , 𝑛 , ⟨“ ⟨ 𝑎 , 𝑏 ⟩ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ”⟩ ⟩ ) ) } )
167 intss1 ( { ⟨ 𝑢 , 𝑣 ⟩ ∣ ( { 𝑢 , 𝑣 } ⊆ 𝑊 ∧ ( 𝐻 Σg ( 𝑇𝑢 ) ) = ( 𝐻 Σg ( 𝑇𝑣 ) ) ) } ∈ { 𝑟 ∣ ( 𝑟 Er 𝑊 ∧ ∀ 𝑥𝑊𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ∀ 𝑎𝐼𝑏 ∈ 2o 𝑥 𝑟 ( 𝑥 splice ⟨ 𝑛 , 𝑛 , ⟨“ ⟨ 𝑎 , 𝑏 ⟩ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ”⟩ ⟩ ) ) } → { 𝑟 ∣ ( 𝑟 Er 𝑊 ∧ ∀ 𝑥𝑊𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ∀ 𝑎𝐼𝑏 ∈ 2o 𝑥 𝑟 ( 𝑥 splice ⟨ 𝑛 , 𝑛 , ⟨“ ⟨ 𝑎 , 𝑏 ⟩ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ”⟩ ⟩ ) ) } ⊆ { ⟨ 𝑢 , 𝑣 ⟩ ∣ ( { 𝑢 , 𝑣 } ⊆ 𝑊 ∧ ( 𝐻 Σg ( 𝑇𝑢 ) ) = ( 𝐻 Σg ( 𝑇𝑣 ) ) ) } )
168 166 167 syl ( 𝜑 { 𝑟 ∣ ( 𝑟 Er 𝑊 ∧ ∀ 𝑥𝑊𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ∀ 𝑎𝐼𝑏 ∈ 2o 𝑥 𝑟 ( 𝑥 splice ⟨ 𝑛 , 𝑛 , ⟨“ ⟨ 𝑎 , 𝑏 ⟩ ⟨ 𝑎 , ( 1o𝑏 ) ⟩ ”⟩ ⟩ ) ) } ⊆ { ⟨ 𝑢 , 𝑣 ⟩ ∣ ( { 𝑢 , 𝑣 } ⊆ 𝑊 ∧ ( 𝐻 Σg ( 𝑇𝑢 ) ) = ( 𝐻 Σg ( 𝑇𝑣 ) ) ) } )
169 9 168 eqsstrid ( 𝜑 ⊆ { ⟨ 𝑢 , 𝑣 ⟩ ∣ ( { 𝑢 , 𝑣 } ⊆ 𝑊 ∧ ( 𝐻 Σg ( 𝑇𝑢 ) ) = ( 𝐻 Σg ( 𝑇𝑣 ) ) ) } )
170 169 ssbrd ( 𝜑 → ( 𝐴 𝐶𝐴 { ⟨ 𝑢 , 𝑣 ⟩ ∣ ( { 𝑢 , 𝑣 } ⊆ 𝑊 ∧ ( 𝐻 Σg ( 𝑇𝑢 ) ) = ( 𝐻 Σg ( 𝑇𝑣 ) ) ) } 𝐶 ) )
171 170 imp ( ( 𝜑𝐴 𝐶 ) → 𝐴 { ⟨ 𝑢 , 𝑣 ⟩ ∣ ( { 𝑢 , 𝑣 } ⊆ 𝑊 ∧ ( 𝐻 Σg ( 𝑇𝑢 ) ) = ( 𝐻 Σg ( 𝑇𝑣 ) ) ) } 𝐶 )
172 7 8 efger Er 𝑊
173 errel ( Er 𝑊 → Rel )
174 172 173 mp1i ( 𝜑 → Rel )
175 brrelex12 ( ( Rel 𝐴 𝐶 ) → ( 𝐴 ∈ V ∧ 𝐶 ∈ V ) )
176 174 175 sylan ( ( 𝜑𝐴 𝐶 ) → ( 𝐴 ∈ V ∧ 𝐶 ∈ V ) )
177 preq12 ( ( 𝑢 = 𝐴𝑣 = 𝐶 ) → { 𝑢 , 𝑣 } = { 𝐴 , 𝐶 } )
178 177 sseq1d ( ( 𝑢 = 𝐴𝑣 = 𝐶 ) → ( { 𝑢 , 𝑣 } ⊆ 𝑊 ↔ { 𝐴 , 𝐶 } ⊆ 𝑊 ) )
179 coeq2 ( 𝑢 = 𝐴 → ( 𝑇𝑢 ) = ( 𝑇𝐴 ) )
180 179 oveq2d ( 𝑢 = 𝐴 → ( 𝐻 Σg ( 𝑇𝑢 ) ) = ( 𝐻 Σg ( 𝑇𝐴 ) ) )
181 coeq2 ( 𝑣 = 𝐶 → ( 𝑇𝑣 ) = ( 𝑇𝐶 ) )
182 181 oveq2d ( 𝑣 = 𝐶 → ( 𝐻 Σg ( 𝑇𝑣 ) ) = ( 𝐻 Σg ( 𝑇𝐶 ) ) )
183 180 182 eqeqan12d ( ( 𝑢 = 𝐴𝑣 = 𝐶 ) → ( ( 𝐻 Σg ( 𝑇𝑢 ) ) = ( 𝐻 Σg ( 𝑇𝑣 ) ) ↔ ( 𝐻 Σg ( 𝑇𝐴 ) ) = ( 𝐻 Σg ( 𝑇𝐶 ) ) ) )
184 178 183 anbi12d ( ( 𝑢 = 𝐴𝑣 = 𝐶 ) → ( ( { 𝑢 , 𝑣 } ⊆ 𝑊 ∧ ( 𝐻 Σg ( 𝑇𝑢 ) ) = ( 𝐻 Σg ( 𝑇𝑣 ) ) ) ↔ ( { 𝐴 , 𝐶 } ⊆ 𝑊 ∧ ( 𝐻 Σg ( 𝑇𝐴 ) ) = ( 𝐻 Σg ( 𝑇𝐶 ) ) ) ) )
185 184 151 brabga ( ( 𝐴 ∈ V ∧ 𝐶 ∈ V ) → ( 𝐴 { ⟨ 𝑢 , 𝑣 ⟩ ∣ ( { 𝑢 , 𝑣 } ⊆ 𝑊 ∧ ( 𝐻 Σg ( 𝑇𝑢 ) ) = ( 𝐻 Σg ( 𝑇𝑣 ) ) ) } 𝐶 ↔ ( { 𝐴 , 𝐶 } ⊆ 𝑊 ∧ ( 𝐻 Σg ( 𝑇𝐴 ) ) = ( 𝐻 Σg ( 𝑇𝐶 ) ) ) ) )
186 176 185 syl ( ( 𝜑𝐴 𝐶 ) → ( 𝐴 { ⟨ 𝑢 , 𝑣 ⟩ ∣ ( { 𝑢 , 𝑣 } ⊆ 𝑊 ∧ ( 𝐻 Σg ( 𝑇𝑢 ) ) = ( 𝐻 Σg ( 𝑇𝑣 ) ) ) } 𝐶 ↔ ( { 𝐴 , 𝐶 } ⊆ 𝑊 ∧ ( 𝐻 Σg ( 𝑇𝐴 ) ) = ( 𝐻 Σg ( 𝑇𝐶 ) ) ) ) )
187 171 186 mpbid ( ( 𝜑𝐴 𝐶 ) → ( { 𝐴 , 𝐶 } ⊆ 𝑊 ∧ ( 𝐻 Σg ( 𝑇𝐴 ) ) = ( 𝐻 Σg ( 𝑇𝐶 ) ) ) )
188 187 simprd ( ( 𝜑𝐴 𝐶 ) → ( 𝐻 Σg ( 𝑇𝐴 ) ) = ( 𝐻 Σg ( 𝑇𝐶 ) ) )