Step |
Hyp |
Ref |
Expression |
1 |
|
frgpup.b |
⊢ 𝐵 = ( Base ‘ 𝐻 ) |
2 |
|
frgpup.n |
⊢ 𝑁 = ( invg ‘ 𝐻 ) |
3 |
|
frgpup.t |
⊢ 𝑇 = ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ if ( 𝑧 = ∅ , ( 𝐹 ‘ 𝑦 ) , ( 𝑁 ‘ ( 𝐹 ‘ 𝑦 ) ) ) ) |
4 |
|
frgpup.h |
⊢ ( 𝜑 → 𝐻 ∈ Grp ) |
5 |
|
frgpup.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
6 |
|
frgpup.a |
⊢ ( 𝜑 → 𝐹 : 𝐼 ⟶ 𝐵 ) |
7 |
|
frgpup.w |
⊢ 𝑊 = ( I ‘ Word ( 𝐼 × 2o ) ) |
8 |
|
frgpup.r |
⊢ ∼ = ( ~FG ‘ 𝐼 ) |
9 |
|
frgpup.g |
⊢ 𝐺 = ( freeGrp ‘ 𝐼 ) |
10 |
|
frgpup.x |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
11 |
|
frgpup.e |
⊢ 𝐸 = ran ( 𝑔 ∈ 𝑊 ↦ 〈 [ 𝑔 ] ∼ , ( 𝐻 Σg ( 𝑇 ∘ 𝑔 ) ) 〉 ) |
12 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑊 ) → ( 𝐻 Σg ( 𝑇 ∘ 𝑔 ) ) ∈ V ) |
13 |
7 8
|
efger |
⊢ ∼ Er 𝑊 |
14 |
13
|
a1i |
⊢ ( 𝜑 → ∼ Er 𝑊 ) |
15 |
7
|
fvexi |
⊢ 𝑊 ∈ V |
16 |
15
|
a1i |
⊢ ( 𝜑 → 𝑊 ∈ V ) |
17 |
|
coeq2 |
⊢ ( 𝑔 = 𝐴 → ( 𝑇 ∘ 𝑔 ) = ( 𝑇 ∘ 𝐴 ) ) |
18 |
17
|
oveq2d |
⊢ ( 𝑔 = 𝐴 → ( 𝐻 Σg ( 𝑇 ∘ 𝑔 ) ) = ( 𝐻 Σg ( 𝑇 ∘ 𝐴 ) ) ) |
19 |
1 2 3 4 5 6 7 8 9 10 11
|
frgpupf |
⊢ ( 𝜑 → 𝐸 : 𝑋 ⟶ 𝐵 ) |
20 |
19
|
ffund |
⊢ ( 𝜑 → Fun 𝐸 ) |
21 |
11 12 14 16 18 20
|
qliftval |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝑊 ) → ( 𝐸 ‘ [ 𝐴 ] ∼ ) = ( 𝐻 Σg ( 𝑇 ∘ 𝐴 ) ) ) |