Metamath Proof Explorer


Theorem frgr0

Description: The null graph (graph without vertices) is a friendship graph. (Contributed by AV, 29-Mar-2021)

Ref Expression
Assertion frgr0 ∅ ∈ FriendGraph

Proof

Step Hyp Ref Expression
1 usgr0 ∅ ∈ USGraph
2 ral0 𝑘 ∈ ∅ ∀ 𝑙 ∈ ( ∅ ∖ { 𝑘 } ) ∃! 𝑥 ∈ ∅ { { 𝑥 , 𝑘 } , { 𝑥 , 𝑙 } } ⊆ ( Edg ‘ ∅ )
3 vtxval0 ( Vtx ‘ ∅ ) = ∅
4 3 eqcomi ∅ = ( Vtx ‘ ∅ )
5 eqid ( Edg ‘ ∅ ) = ( Edg ‘ ∅ )
6 4 5 isfrgr ( ∅ ∈ FriendGraph ↔ ( ∅ ∈ USGraph ∧ ∀ 𝑘 ∈ ∅ ∀ 𝑙 ∈ ( ∅ ∖ { 𝑘 } ) ∃! 𝑥 ∈ ∅ { { 𝑥 , 𝑘 } , { 𝑥 , 𝑙 } } ⊆ ( Edg ‘ ∅ ) ) )
7 1 2 6 mpbir2an ∅ ∈ FriendGraph