Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
2 |
|
eqid |
⊢ ( Edg ‘ 𝐺 ) = ( Edg ‘ 𝐺 ) |
3 |
1 2
|
isfrgr |
⊢ ( 𝐺 ∈ FriendGraph ↔ ( 𝐺 ∈ USGraph ∧ ∀ 𝑘 ∈ ( Vtx ‘ 𝐺 ) ∀ 𝑙 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑘 } ) ∃! 𝑥 ∈ ( Vtx ‘ 𝐺 ) { { 𝑥 , 𝑘 } , { 𝑥 , 𝑙 } } ⊆ ( Edg ‘ 𝐺 ) ) ) |
4 |
|
usgruhgr |
⊢ ( 𝐺 ∈ USGraph → 𝐺 ∈ UHGraph ) |
5 |
4
|
adantr |
⊢ ( ( 𝐺 ∈ USGraph ∧ ∀ 𝑘 ∈ ( Vtx ‘ 𝐺 ) ∀ 𝑙 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑘 } ) ∃! 𝑥 ∈ ( Vtx ‘ 𝐺 ) { { 𝑥 , 𝑘 } , { 𝑥 , 𝑙 } } ⊆ ( Edg ‘ 𝐺 ) ) → 𝐺 ∈ UHGraph ) |
6 |
|
uhgr0vb |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ ( Vtx ‘ 𝐺 ) = ∅ ) → ( 𝐺 ∈ UHGraph ↔ ( iEdg ‘ 𝐺 ) = ∅ ) ) |
7 |
5 6
|
syl5ib |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ ( Vtx ‘ 𝐺 ) = ∅ ) → ( ( 𝐺 ∈ USGraph ∧ ∀ 𝑘 ∈ ( Vtx ‘ 𝐺 ) ∀ 𝑙 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑘 } ) ∃! 𝑥 ∈ ( Vtx ‘ 𝐺 ) { { 𝑥 , 𝑘 } , { 𝑥 , 𝑙 } } ⊆ ( Edg ‘ 𝐺 ) ) → ( iEdg ‘ 𝐺 ) = ∅ ) ) |
8 |
|
simpll |
⊢ ( ( ( 𝐺 ∈ 𝑊 ∧ ( Vtx ‘ 𝐺 ) = ∅ ) ∧ ( iEdg ‘ 𝐺 ) = ∅ ) → 𝐺 ∈ 𝑊 ) |
9 |
|
simpr |
⊢ ( ( ( 𝐺 ∈ 𝑊 ∧ ( Vtx ‘ 𝐺 ) = ∅ ) ∧ ( iEdg ‘ 𝐺 ) = ∅ ) → ( iEdg ‘ 𝐺 ) = ∅ ) |
10 |
8 9
|
usgr0e |
⊢ ( ( ( 𝐺 ∈ 𝑊 ∧ ( Vtx ‘ 𝐺 ) = ∅ ) ∧ ( iEdg ‘ 𝐺 ) = ∅ ) → 𝐺 ∈ USGraph ) |
11 |
|
ral0 |
⊢ ∀ 𝑘 ∈ ∅ ∀ 𝑙 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑘 } ) ∃! 𝑥 ∈ ( Vtx ‘ 𝐺 ) { { 𝑥 , 𝑘 } , { 𝑥 , 𝑙 } } ⊆ ( Edg ‘ 𝐺 ) |
12 |
|
raleq |
⊢ ( ( Vtx ‘ 𝐺 ) = ∅ → ( ∀ 𝑘 ∈ ( Vtx ‘ 𝐺 ) ∀ 𝑙 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑘 } ) ∃! 𝑥 ∈ ( Vtx ‘ 𝐺 ) { { 𝑥 , 𝑘 } , { 𝑥 , 𝑙 } } ⊆ ( Edg ‘ 𝐺 ) ↔ ∀ 𝑘 ∈ ∅ ∀ 𝑙 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑘 } ) ∃! 𝑥 ∈ ( Vtx ‘ 𝐺 ) { { 𝑥 , 𝑘 } , { 𝑥 , 𝑙 } } ⊆ ( Edg ‘ 𝐺 ) ) ) |
13 |
12
|
adantl |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ ( Vtx ‘ 𝐺 ) = ∅ ) → ( ∀ 𝑘 ∈ ( Vtx ‘ 𝐺 ) ∀ 𝑙 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑘 } ) ∃! 𝑥 ∈ ( Vtx ‘ 𝐺 ) { { 𝑥 , 𝑘 } , { 𝑥 , 𝑙 } } ⊆ ( Edg ‘ 𝐺 ) ↔ ∀ 𝑘 ∈ ∅ ∀ 𝑙 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑘 } ) ∃! 𝑥 ∈ ( Vtx ‘ 𝐺 ) { { 𝑥 , 𝑘 } , { 𝑥 , 𝑙 } } ⊆ ( Edg ‘ 𝐺 ) ) ) |
14 |
11 13
|
mpbiri |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ ( Vtx ‘ 𝐺 ) = ∅ ) → ∀ 𝑘 ∈ ( Vtx ‘ 𝐺 ) ∀ 𝑙 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑘 } ) ∃! 𝑥 ∈ ( Vtx ‘ 𝐺 ) { { 𝑥 , 𝑘 } , { 𝑥 , 𝑙 } } ⊆ ( Edg ‘ 𝐺 ) ) |
15 |
14
|
adantr |
⊢ ( ( ( 𝐺 ∈ 𝑊 ∧ ( Vtx ‘ 𝐺 ) = ∅ ) ∧ ( iEdg ‘ 𝐺 ) = ∅ ) → ∀ 𝑘 ∈ ( Vtx ‘ 𝐺 ) ∀ 𝑙 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑘 } ) ∃! 𝑥 ∈ ( Vtx ‘ 𝐺 ) { { 𝑥 , 𝑘 } , { 𝑥 , 𝑙 } } ⊆ ( Edg ‘ 𝐺 ) ) |
16 |
10 15
|
jca |
⊢ ( ( ( 𝐺 ∈ 𝑊 ∧ ( Vtx ‘ 𝐺 ) = ∅ ) ∧ ( iEdg ‘ 𝐺 ) = ∅ ) → ( 𝐺 ∈ USGraph ∧ ∀ 𝑘 ∈ ( Vtx ‘ 𝐺 ) ∀ 𝑙 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑘 } ) ∃! 𝑥 ∈ ( Vtx ‘ 𝐺 ) { { 𝑥 , 𝑘 } , { 𝑥 , 𝑙 } } ⊆ ( Edg ‘ 𝐺 ) ) ) |
17 |
16
|
ex |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ ( Vtx ‘ 𝐺 ) = ∅ ) → ( ( iEdg ‘ 𝐺 ) = ∅ → ( 𝐺 ∈ USGraph ∧ ∀ 𝑘 ∈ ( Vtx ‘ 𝐺 ) ∀ 𝑙 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑘 } ) ∃! 𝑥 ∈ ( Vtx ‘ 𝐺 ) { { 𝑥 , 𝑘 } , { 𝑥 , 𝑙 } } ⊆ ( Edg ‘ 𝐺 ) ) ) ) |
18 |
7 17
|
impbid |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ ( Vtx ‘ 𝐺 ) = ∅ ) → ( ( 𝐺 ∈ USGraph ∧ ∀ 𝑘 ∈ ( Vtx ‘ 𝐺 ) ∀ 𝑙 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑘 } ) ∃! 𝑥 ∈ ( Vtx ‘ 𝐺 ) { { 𝑥 , 𝑘 } , { 𝑥 , 𝑙 } } ⊆ ( Edg ‘ 𝐺 ) ) ↔ ( iEdg ‘ 𝐺 ) = ∅ ) ) |
19 |
3 18
|
syl5bb |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ ( Vtx ‘ 𝐺 ) = ∅ ) → ( 𝐺 ∈ FriendGraph ↔ ( iEdg ‘ 𝐺 ) = ∅ ) ) |