Metamath Proof Explorer


Theorem frgr2wsp1

Description: In a friendship graph, there is exactly one simple path of length 2 between two different vertices. (Contributed by Alexander van der Vekens, 3-Mar-2018) (Revised by AV, 13-May-2021)

Ref Expression
Hypothesis frgr2wwlkeu.v 𝑉 = ( Vtx ‘ 𝐺 )
Assertion frgr2wsp1 ( ( 𝐺 ∈ FriendGraph ∧ ( 𝐴𝑉𝐵𝑉 ) ∧ 𝐴𝐵 ) → ( ♯ ‘ ( 𝐴 ( 2 WSPathsNOn 𝐺 ) 𝐵 ) ) = 1 )

Proof

Step Hyp Ref Expression
1 frgr2wwlkeu.v 𝑉 = ( Vtx ‘ 𝐺 )
2 frgrusgr ( 𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph )
3 wpthswwlks2on ( ( 𝐺 ∈ USGraph ∧ 𝐴𝐵 ) → ( 𝐴 ( 2 WSPathsNOn 𝐺 ) 𝐵 ) = ( 𝐴 ( 2 WWalksNOn 𝐺 ) 𝐵 ) )
4 2 3 sylan ( ( 𝐺 ∈ FriendGraph ∧ 𝐴𝐵 ) → ( 𝐴 ( 2 WSPathsNOn 𝐺 ) 𝐵 ) = ( 𝐴 ( 2 WWalksNOn 𝐺 ) 𝐵 ) )
5 4 3adant2 ( ( 𝐺 ∈ FriendGraph ∧ ( 𝐴𝑉𝐵𝑉 ) ∧ 𝐴𝐵 ) → ( 𝐴 ( 2 WSPathsNOn 𝐺 ) 𝐵 ) = ( 𝐴 ( 2 WWalksNOn 𝐺 ) 𝐵 ) )
6 5 fveq2d ( ( 𝐺 ∈ FriendGraph ∧ ( 𝐴𝑉𝐵𝑉 ) ∧ 𝐴𝐵 ) → ( ♯ ‘ ( 𝐴 ( 2 WSPathsNOn 𝐺 ) 𝐵 ) ) = ( ♯ ‘ ( 𝐴 ( 2 WWalksNOn 𝐺 ) 𝐵 ) ) )
7 1 frgr2wwlk1 ( ( 𝐺 ∈ FriendGraph ∧ ( 𝐴𝑉𝐵𝑉 ) ∧ 𝐴𝐵 ) → ( ♯ ‘ ( 𝐴 ( 2 WWalksNOn 𝐺 ) 𝐵 ) ) = 1 )
8 6 7 eqtrd ( ( 𝐺 ∈ FriendGraph ∧ ( 𝐴𝑉𝐵𝑉 ) ∧ 𝐴𝐵 ) → ( ♯ ‘ ( 𝐴 ( 2 WSPathsNOn 𝐺 ) 𝐵 ) ) = 1 )