Step |
Hyp |
Ref |
Expression |
1 |
|
frgr2wwlkeu.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
frgrusgr |
⊢ ( 𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph ) |
3 |
|
wpthswwlks2on |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝐴 ≠ 𝐵 ) → ( 𝐴 ( 2 WSPathsNOn 𝐺 ) 𝐵 ) = ( 𝐴 ( 2 WWalksNOn 𝐺 ) 𝐵 ) ) |
4 |
2 3
|
sylan |
⊢ ( ( 𝐺 ∈ FriendGraph ∧ 𝐴 ≠ 𝐵 ) → ( 𝐴 ( 2 WSPathsNOn 𝐺 ) 𝐵 ) = ( 𝐴 ( 2 WWalksNOn 𝐺 ) 𝐵 ) ) |
5 |
4
|
3adant2 |
⊢ ( ( 𝐺 ∈ FriendGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ 𝐴 ≠ 𝐵 ) → ( 𝐴 ( 2 WSPathsNOn 𝐺 ) 𝐵 ) = ( 𝐴 ( 2 WWalksNOn 𝐺 ) 𝐵 ) ) |
6 |
5
|
fveq2d |
⊢ ( ( 𝐺 ∈ FriendGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ 𝐴 ≠ 𝐵 ) → ( ♯ ‘ ( 𝐴 ( 2 WSPathsNOn 𝐺 ) 𝐵 ) ) = ( ♯ ‘ ( 𝐴 ( 2 WWalksNOn 𝐺 ) 𝐵 ) ) ) |
7 |
1
|
frgr2wwlk1 |
⊢ ( ( 𝐺 ∈ FriendGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ 𝐴 ≠ 𝐵 ) → ( ♯ ‘ ( 𝐴 ( 2 WWalksNOn 𝐺 ) 𝐵 ) ) = 1 ) |
8 |
6 7
|
eqtrd |
⊢ ( ( 𝐺 ∈ FriendGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ 𝐴 ≠ 𝐵 ) → ( ♯ ‘ ( 𝐴 ( 2 WSPathsNOn 𝐺 ) 𝐵 ) ) = 1 ) |