Metamath Proof Explorer


Theorem frgr2wwlkn0

Description: In a friendship graph, there is always a path/walk of length 2 between two different vertices. (Contributed by Alexander van der Vekens, 18-Feb-2018) (Revised by AV, 12-May-2021)

Ref Expression
Hypothesis frgr2wwlkeu.v 𝑉 = ( Vtx ‘ 𝐺 )
Assertion frgr2wwlkn0 ( ( 𝐺 ∈ FriendGraph ∧ ( 𝐴𝑉𝐵𝑉 ) ∧ 𝐴𝐵 ) → ( 𝐴 ( 2 WWalksNOn 𝐺 ) 𝐵 ) ≠ ∅ )

Proof

Step Hyp Ref Expression
1 frgr2wwlkeu.v 𝑉 = ( Vtx ‘ 𝐺 )
2 1 frgr2wwlkeu ( ( 𝐺 ∈ FriendGraph ∧ ( 𝐴𝑉𝐵𝑉 ) ∧ 𝐴𝐵 ) → ∃! 𝑐𝑉 ⟨“ 𝐴 𝑐 𝐵 ”⟩ ∈ ( 𝐴 ( 2 WWalksNOn 𝐺 ) 𝐵 ) )
3 reurex ( ∃! 𝑐𝑉 ⟨“ 𝐴 𝑐 𝐵 ”⟩ ∈ ( 𝐴 ( 2 WWalksNOn 𝐺 ) 𝐵 ) → ∃ 𝑐𝑉 ⟨“ 𝐴 𝑐 𝐵 ”⟩ ∈ ( 𝐴 ( 2 WWalksNOn 𝐺 ) 𝐵 ) )
4 ne0i ( ⟨“ 𝐴 𝑐 𝐵 ”⟩ ∈ ( 𝐴 ( 2 WWalksNOn 𝐺 ) 𝐵 ) → ( 𝐴 ( 2 WWalksNOn 𝐺 ) 𝐵 ) ≠ ∅ )
5 4 rexlimivw ( ∃ 𝑐𝑉 ⟨“ 𝐴 𝑐 𝐵 ”⟩ ∈ ( 𝐴 ( 2 WWalksNOn 𝐺 ) 𝐵 ) → ( 𝐴 ( 2 WWalksNOn 𝐺 ) 𝐵 ) ≠ ∅ )
6 2 3 5 3syl ( ( 𝐺 ∈ FriendGraph ∧ ( 𝐴𝑉𝐵𝑉 ) ∧ 𝐴𝐵 ) → ( 𝐴 ( 2 WWalksNOn 𝐺 ) 𝐵 ) ≠ ∅ )