| Step |
Hyp |
Ref |
Expression |
| 1 |
|
frgr3v.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
| 2 |
|
frgr3v.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
| 3 |
|
vex |
⊢ 𝑥 ∈ V |
| 4 |
3
|
eltp |
⊢ ( 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } ↔ ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ∨ 𝑥 = 𝐶 ) ) |
| 5 |
|
vex |
⊢ 𝑦 ∈ V |
| 6 |
5
|
eltp |
⊢ ( 𝑦 ∈ { 𝐴 , 𝐵 , 𝐶 } ↔ ( 𝑦 = 𝐴 ∨ 𝑦 = 𝐵 ∨ 𝑦 = 𝐶 ) ) |
| 7 |
|
eqidd |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐴 = 𝐴 ) |
| 8 |
7
|
a1i |
⊢ ( { { 𝐴 , 𝐴 } , { 𝐴 , 𝐵 } } ⊆ 𝐸 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐴 = 𝐴 ) ) |
| 9 |
8
|
a1i13 |
⊢ ( 𝑦 = 𝐴 → ( { { 𝐴 , 𝐴 } , { 𝐴 , 𝐵 } } ⊆ 𝐸 → ( { { 𝐴 , 𝐴 } , { 𝐴 , 𝐵 } } ⊆ 𝐸 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐴 = 𝐴 ) ) ) ) |
| 10 |
|
preq1 |
⊢ ( 𝑦 = 𝐴 → { 𝑦 , 𝐴 } = { 𝐴 , 𝐴 } ) |
| 11 |
|
preq1 |
⊢ ( 𝑦 = 𝐴 → { 𝑦 , 𝐵 } = { 𝐴 , 𝐵 } ) |
| 12 |
10 11
|
preq12d |
⊢ ( 𝑦 = 𝐴 → { { 𝑦 , 𝐴 } , { 𝑦 , 𝐵 } } = { { 𝐴 , 𝐴 } , { 𝐴 , 𝐵 } } ) |
| 13 |
12
|
sseq1d |
⊢ ( 𝑦 = 𝐴 → ( { { 𝑦 , 𝐴 } , { 𝑦 , 𝐵 } } ⊆ 𝐸 ↔ { { 𝐴 , 𝐴 } , { 𝐴 , 𝐵 } } ⊆ 𝐸 ) ) |
| 14 |
|
eqeq2 |
⊢ ( 𝑦 = 𝐴 → ( 𝐴 = 𝑦 ↔ 𝐴 = 𝐴 ) ) |
| 15 |
14
|
imbi2d |
⊢ ( 𝑦 = 𝐴 → ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐴 = 𝑦 ) ↔ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐴 = 𝐴 ) ) ) |
| 16 |
15
|
imbi2d |
⊢ ( 𝑦 = 𝐴 → ( ( { { 𝐴 , 𝐴 } , { 𝐴 , 𝐵 } } ⊆ 𝐸 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐴 = 𝑦 ) ) ↔ ( { { 𝐴 , 𝐴 } , { 𝐴 , 𝐵 } } ⊆ 𝐸 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐴 = 𝐴 ) ) ) ) |
| 17 |
9 13 16
|
3imtr4d |
⊢ ( 𝑦 = 𝐴 → ( { { 𝑦 , 𝐴 } , { 𝑦 , 𝐵 } } ⊆ 𝐸 → ( { { 𝐴 , 𝐴 } , { 𝐴 , 𝐵 } } ⊆ 𝐸 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐴 = 𝑦 ) ) ) ) |
| 18 |
|
prex |
⊢ { 𝐴 , 𝐴 } ∈ V |
| 19 |
|
prex |
⊢ { 𝐴 , 𝐵 } ∈ V |
| 20 |
18 19
|
prss |
⊢ ( ( { 𝐴 , 𝐴 } ∈ 𝐸 ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) ↔ { { 𝐴 , 𝐴 } , { 𝐴 , 𝐵 } } ⊆ 𝐸 ) |
| 21 |
2
|
usgredgne |
⊢ ( ( 𝐺 ∈ USGraph ∧ { 𝐴 , 𝐴 } ∈ 𝐸 ) → 𝐴 ≠ 𝐴 ) |
| 22 |
21
|
adantll |
⊢ ( ( ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ∧ { 𝐴 , 𝐴 } ∈ 𝐸 ) → 𝐴 ≠ 𝐴 ) |
| 23 |
|
df-ne |
⊢ ( 𝐴 ≠ 𝐴 ↔ ¬ 𝐴 = 𝐴 ) |
| 24 |
|
eqid |
⊢ 𝐴 = 𝐴 |
| 25 |
24
|
pm2.24i |
⊢ ( ¬ 𝐴 = 𝐴 → 𝐴 = 𝐵 ) |
| 26 |
23 25
|
sylbi |
⊢ ( 𝐴 ≠ 𝐴 → 𝐴 = 𝐵 ) |
| 27 |
22 26
|
syl |
⊢ ( ( ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ∧ { 𝐴 , 𝐴 } ∈ 𝐸 ) → 𝐴 = 𝐵 ) |
| 28 |
27
|
expcom |
⊢ ( { 𝐴 , 𝐴 } ∈ 𝐸 → ( ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) → 𝐴 = 𝐵 ) ) |
| 29 |
28
|
adantr |
⊢ ( ( { 𝐴 , 𝐴 } ∈ 𝐸 ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → ( ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) → 𝐴 = 𝐵 ) ) |
| 30 |
20 29
|
sylbir |
⊢ ( { { 𝐴 , 𝐴 } , { 𝐴 , 𝐵 } } ⊆ 𝐸 → ( ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) → 𝐴 = 𝐵 ) ) |
| 31 |
30
|
com12 |
⊢ ( ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) → ( { { 𝐴 , 𝐴 } , { 𝐴 , 𝐵 } } ⊆ 𝐸 → 𝐴 = 𝐵 ) ) |
| 32 |
31
|
3ad2ant3 |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → ( { { 𝐴 , 𝐴 } , { 𝐴 , 𝐵 } } ⊆ 𝐸 → 𝐴 = 𝐵 ) ) |
| 33 |
32
|
com12 |
⊢ ( { { 𝐴 , 𝐴 } , { 𝐴 , 𝐵 } } ⊆ 𝐸 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐴 = 𝐵 ) ) |
| 34 |
33
|
2a1i |
⊢ ( 𝑦 = 𝐵 → ( { { 𝐵 , 𝐴 } , { 𝐵 , 𝐵 } } ⊆ 𝐸 → ( { { 𝐴 , 𝐴 } , { 𝐴 , 𝐵 } } ⊆ 𝐸 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐴 = 𝐵 ) ) ) ) |
| 35 |
|
preq1 |
⊢ ( 𝑦 = 𝐵 → { 𝑦 , 𝐴 } = { 𝐵 , 𝐴 } ) |
| 36 |
|
preq1 |
⊢ ( 𝑦 = 𝐵 → { 𝑦 , 𝐵 } = { 𝐵 , 𝐵 } ) |
| 37 |
35 36
|
preq12d |
⊢ ( 𝑦 = 𝐵 → { { 𝑦 , 𝐴 } , { 𝑦 , 𝐵 } } = { { 𝐵 , 𝐴 } , { 𝐵 , 𝐵 } } ) |
| 38 |
37
|
sseq1d |
⊢ ( 𝑦 = 𝐵 → ( { { 𝑦 , 𝐴 } , { 𝑦 , 𝐵 } } ⊆ 𝐸 ↔ { { 𝐵 , 𝐴 } , { 𝐵 , 𝐵 } } ⊆ 𝐸 ) ) |
| 39 |
|
eqeq2 |
⊢ ( 𝑦 = 𝐵 → ( 𝐴 = 𝑦 ↔ 𝐴 = 𝐵 ) ) |
| 40 |
39
|
imbi2d |
⊢ ( 𝑦 = 𝐵 → ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐴 = 𝑦 ) ↔ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐴 = 𝐵 ) ) ) |
| 41 |
40
|
imbi2d |
⊢ ( 𝑦 = 𝐵 → ( ( { { 𝐴 , 𝐴 } , { 𝐴 , 𝐵 } } ⊆ 𝐸 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐴 = 𝑦 ) ) ↔ ( { { 𝐴 , 𝐴 } , { 𝐴 , 𝐵 } } ⊆ 𝐸 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐴 = 𝐵 ) ) ) ) |
| 42 |
34 38 41
|
3imtr4d |
⊢ ( 𝑦 = 𝐵 → ( { { 𝑦 , 𝐴 } , { 𝑦 , 𝐵 } } ⊆ 𝐸 → ( { { 𝐴 , 𝐴 } , { 𝐴 , 𝐵 } } ⊆ 𝐸 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐴 = 𝑦 ) ) ) ) |
| 43 |
24
|
pm2.24i |
⊢ ( ¬ 𝐴 = 𝐴 → 𝐴 = 𝐶 ) |
| 44 |
23 43
|
sylbi |
⊢ ( 𝐴 ≠ 𝐴 → 𝐴 = 𝐶 ) |
| 45 |
22 44
|
syl |
⊢ ( ( ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ∧ { 𝐴 , 𝐴 } ∈ 𝐸 ) → 𝐴 = 𝐶 ) |
| 46 |
45
|
expcom |
⊢ ( { 𝐴 , 𝐴 } ∈ 𝐸 → ( ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) → 𝐴 = 𝐶 ) ) |
| 47 |
46
|
adantr |
⊢ ( ( { 𝐴 , 𝐴 } ∈ 𝐸 ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → ( ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) → 𝐴 = 𝐶 ) ) |
| 48 |
20 47
|
sylbir |
⊢ ( { { 𝐴 , 𝐴 } , { 𝐴 , 𝐵 } } ⊆ 𝐸 → ( ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) → 𝐴 = 𝐶 ) ) |
| 49 |
48
|
com12 |
⊢ ( ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) → ( { { 𝐴 , 𝐴 } , { 𝐴 , 𝐵 } } ⊆ 𝐸 → 𝐴 = 𝐶 ) ) |
| 50 |
49
|
3ad2ant3 |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → ( { { 𝐴 , 𝐴 } , { 𝐴 , 𝐵 } } ⊆ 𝐸 → 𝐴 = 𝐶 ) ) |
| 51 |
50
|
com12 |
⊢ ( { { 𝐴 , 𝐴 } , { 𝐴 , 𝐵 } } ⊆ 𝐸 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐴 = 𝐶 ) ) |
| 52 |
51
|
2a1i |
⊢ ( 𝑦 = 𝐶 → ( { { 𝐶 , 𝐴 } , { 𝐶 , 𝐵 } } ⊆ 𝐸 → ( { { 𝐴 , 𝐴 } , { 𝐴 , 𝐵 } } ⊆ 𝐸 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐴 = 𝐶 ) ) ) ) |
| 53 |
|
preq1 |
⊢ ( 𝑦 = 𝐶 → { 𝑦 , 𝐴 } = { 𝐶 , 𝐴 } ) |
| 54 |
|
preq1 |
⊢ ( 𝑦 = 𝐶 → { 𝑦 , 𝐵 } = { 𝐶 , 𝐵 } ) |
| 55 |
53 54
|
preq12d |
⊢ ( 𝑦 = 𝐶 → { { 𝑦 , 𝐴 } , { 𝑦 , 𝐵 } } = { { 𝐶 , 𝐴 } , { 𝐶 , 𝐵 } } ) |
| 56 |
55
|
sseq1d |
⊢ ( 𝑦 = 𝐶 → ( { { 𝑦 , 𝐴 } , { 𝑦 , 𝐵 } } ⊆ 𝐸 ↔ { { 𝐶 , 𝐴 } , { 𝐶 , 𝐵 } } ⊆ 𝐸 ) ) |
| 57 |
|
eqeq2 |
⊢ ( 𝑦 = 𝐶 → ( 𝐴 = 𝑦 ↔ 𝐴 = 𝐶 ) ) |
| 58 |
57
|
imbi2d |
⊢ ( 𝑦 = 𝐶 → ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐴 = 𝑦 ) ↔ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐴 = 𝐶 ) ) ) |
| 59 |
58
|
imbi2d |
⊢ ( 𝑦 = 𝐶 → ( ( { { 𝐴 , 𝐴 } , { 𝐴 , 𝐵 } } ⊆ 𝐸 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐴 = 𝑦 ) ) ↔ ( { { 𝐴 , 𝐴 } , { 𝐴 , 𝐵 } } ⊆ 𝐸 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐴 = 𝐶 ) ) ) ) |
| 60 |
52 56 59
|
3imtr4d |
⊢ ( 𝑦 = 𝐶 → ( { { 𝑦 , 𝐴 } , { 𝑦 , 𝐵 } } ⊆ 𝐸 → ( { { 𝐴 , 𝐴 } , { 𝐴 , 𝐵 } } ⊆ 𝐸 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐴 = 𝑦 ) ) ) ) |
| 61 |
17 42 60
|
3jaoi |
⊢ ( ( 𝑦 = 𝐴 ∨ 𝑦 = 𝐵 ∨ 𝑦 = 𝐶 ) → ( { { 𝑦 , 𝐴 } , { 𝑦 , 𝐵 } } ⊆ 𝐸 → ( { { 𝐴 , 𝐴 } , { 𝐴 , 𝐵 } } ⊆ 𝐸 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐴 = 𝑦 ) ) ) ) |
| 62 |
|
preq1 |
⊢ ( 𝑥 = 𝐴 → { 𝑥 , 𝐴 } = { 𝐴 , 𝐴 } ) |
| 63 |
|
preq1 |
⊢ ( 𝑥 = 𝐴 → { 𝑥 , 𝐵 } = { 𝐴 , 𝐵 } ) |
| 64 |
62 63
|
preq12d |
⊢ ( 𝑥 = 𝐴 → { { 𝑥 , 𝐴 } , { 𝑥 , 𝐵 } } = { { 𝐴 , 𝐴 } , { 𝐴 , 𝐵 } } ) |
| 65 |
64
|
sseq1d |
⊢ ( 𝑥 = 𝐴 → ( { { 𝑥 , 𝐴 } , { 𝑥 , 𝐵 } } ⊆ 𝐸 ↔ { { 𝐴 , 𝐴 } , { 𝐴 , 𝐵 } } ⊆ 𝐸 ) ) |
| 66 |
|
eqeq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 = 𝑦 ↔ 𝐴 = 𝑦 ) ) |
| 67 |
66
|
imbi2d |
⊢ ( 𝑥 = 𝐴 → ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝑥 = 𝑦 ) ↔ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐴 = 𝑦 ) ) ) |
| 68 |
65 67
|
imbi12d |
⊢ ( 𝑥 = 𝐴 → ( ( { { 𝑥 , 𝐴 } , { 𝑥 , 𝐵 } } ⊆ 𝐸 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝑥 = 𝑦 ) ) ↔ ( { { 𝐴 , 𝐴 } , { 𝐴 , 𝐵 } } ⊆ 𝐸 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐴 = 𝑦 ) ) ) ) |
| 69 |
68
|
imbi2d |
⊢ ( 𝑥 = 𝐴 → ( ( { { 𝑦 , 𝐴 } , { 𝑦 , 𝐵 } } ⊆ 𝐸 → ( { { 𝑥 , 𝐴 } , { 𝑥 , 𝐵 } } ⊆ 𝐸 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝑥 = 𝑦 ) ) ) ↔ ( { { 𝑦 , 𝐴 } , { 𝑦 , 𝐵 } } ⊆ 𝐸 → ( { { 𝐴 , 𝐴 } , { 𝐴 , 𝐵 } } ⊆ 𝐸 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐴 = 𝑦 ) ) ) ) ) |
| 70 |
61 69
|
imbitrrid |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑦 = 𝐴 ∨ 𝑦 = 𝐵 ∨ 𝑦 = 𝐶 ) → ( { { 𝑦 , 𝐴 } , { 𝑦 , 𝐵 } } ⊆ 𝐸 → ( { { 𝑥 , 𝐴 } , { 𝑥 , 𝐵 } } ⊆ 𝐸 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝑥 = 𝑦 ) ) ) ) ) |
| 71 |
|
prex |
⊢ { 𝐵 , 𝐴 } ∈ V |
| 72 |
|
prex |
⊢ { 𝐵 , 𝐵 } ∈ V |
| 73 |
71 72
|
prss |
⊢ ( ( { 𝐵 , 𝐴 } ∈ 𝐸 ∧ { 𝐵 , 𝐵 } ∈ 𝐸 ) ↔ { { 𝐵 , 𝐴 } , { 𝐵 , 𝐵 } } ⊆ 𝐸 ) |
| 74 |
2
|
usgredgne |
⊢ ( ( 𝐺 ∈ USGraph ∧ { 𝐵 , 𝐵 } ∈ 𝐸 ) → 𝐵 ≠ 𝐵 ) |
| 75 |
74
|
adantll |
⊢ ( ( ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ∧ { 𝐵 , 𝐵 } ∈ 𝐸 ) → 𝐵 ≠ 𝐵 ) |
| 76 |
|
df-ne |
⊢ ( 𝐵 ≠ 𝐵 ↔ ¬ 𝐵 = 𝐵 ) |
| 77 |
|
eqid |
⊢ 𝐵 = 𝐵 |
| 78 |
77
|
pm2.24i |
⊢ ( ¬ 𝐵 = 𝐵 → 𝐵 = 𝐴 ) |
| 79 |
76 78
|
sylbi |
⊢ ( 𝐵 ≠ 𝐵 → 𝐵 = 𝐴 ) |
| 80 |
75 79
|
syl |
⊢ ( ( ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ∧ { 𝐵 , 𝐵 } ∈ 𝐸 ) → 𝐵 = 𝐴 ) |
| 81 |
80
|
expcom |
⊢ ( { 𝐵 , 𝐵 } ∈ 𝐸 → ( ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) → 𝐵 = 𝐴 ) ) |
| 82 |
81
|
adantl |
⊢ ( ( { 𝐵 , 𝐴 } ∈ 𝐸 ∧ { 𝐵 , 𝐵 } ∈ 𝐸 ) → ( ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) → 𝐵 = 𝐴 ) ) |
| 83 |
73 82
|
sylbir |
⊢ ( { { 𝐵 , 𝐴 } , { 𝐵 , 𝐵 } } ⊆ 𝐸 → ( ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) → 𝐵 = 𝐴 ) ) |
| 84 |
83
|
com12 |
⊢ ( ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) → ( { { 𝐵 , 𝐴 } , { 𝐵 , 𝐵 } } ⊆ 𝐸 → 𝐵 = 𝐴 ) ) |
| 85 |
84
|
3ad2ant3 |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → ( { { 𝐵 , 𝐴 } , { 𝐵 , 𝐵 } } ⊆ 𝐸 → 𝐵 = 𝐴 ) ) |
| 86 |
85
|
com12 |
⊢ ( { { 𝐵 , 𝐴 } , { 𝐵 , 𝐵 } } ⊆ 𝐸 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐵 = 𝐴 ) ) |
| 87 |
86
|
2a1i |
⊢ ( 𝑦 = 𝐴 → ( { { 𝐴 , 𝐴 } , { 𝐴 , 𝐵 } } ⊆ 𝐸 → ( { { 𝐵 , 𝐴 } , { 𝐵 , 𝐵 } } ⊆ 𝐸 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐵 = 𝐴 ) ) ) ) |
| 88 |
|
eqeq2 |
⊢ ( 𝑦 = 𝐴 → ( 𝐵 = 𝑦 ↔ 𝐵 = 𝐴 ) ) |
| 89 |
88
|
imbi2d |
⊢ ( 𝑦 = 𝐴 → ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐵 = 𝑦 ) ↔ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐵 = 𝐴 ) ) ) |
| 90 |
89
|
imbi2d |
⊢ ( 𝑦 = 𝐴 → ( ( { { 𝐵 , 𝐴 } , { 𝐵 , 𝐵 } } ⊆ 𝐸 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐵 = 𝑦 ) ) ↔ ( { { 𝐵 , 𝐴 } , { 𝐵 , 𝐵 } } ⊆ 𝐸 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐵 = 𝐴 ) ) ) ) |
| 91 |
87 13 90
|
3imtr4d |
⊢ ( 𝑦 = 𝐴 → ( { { 𝑦 , 𝐴 } , { 𝑦 , 𝐵 } } ⊆ 𝐸 → ( { { 𝐵 , 𝐴 } , { 𝐵 , 𝐵 } } ⊆ 𝐸 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐵 = 𝑦 ) ) ) ) |
| 92 |
|
eqidd |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐵 = 𝐵 ) |
| 93 |
92
|
a1i |
⊢ ( { { 𝐵 , 𝐴 } , { 𝐵 , 𝐵 } } ⊆ 𝐸 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐵 = 𝐵 ) ) |
| 94 |
93
|
a1i13 |
⊢ ( 𝑦 = 𝐵 → ( { { 𝐵 , 𝐴 } , { 𝐵 , 𝐵 } } ⊆ 𝐸 → ( { { 𝐵 , 𝐴 } , { 𝐵 , 𝐵 } } ⊆ 𝐸 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐵 = 𝐵 ) ) ) ) |
| 95 |
|
eqeq2 |
⊢ ( 𝑦 = 𝐵 → ( 𝐵 = 𝑦 ↔ 𝐵 = 𝐵 ) ) |
| 96 |
95
|
imbi2d |
⊢ ( 𝑦 = 𝐵 → ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐵 = 𝑦 ) ↔ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐵 = 𝐵 ) ) ) |
| 97 |
96
|
imbi2d |
⊢ ( 𝑦 = 𝐵 → ( ( { { 𝐵 , 𝐴 } , { 𝐵 , 𝐵 } } ⊆ 𝐸 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐵 = 𝑦 ) ) ↔ ( { { 𝐵 , 𝐴 } , { 𝐵 , 𝐵 } } ⊆ 𝐸 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐵 = 𝐵 ) ) ) ) |
| 98 |
94 38 97
|
3imtr4d |
⊢ ( 𝑦 = 𝐵 → ( { { 𝑦 , 𝐴 } , { 𝑦 , 𝐵 } } ⊆ 𝐸 → ( { { 𝐵 , 𝐴 } , { 𝐵 , 𝐵 } } ⊆ 𝐸 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐵 = 𝑦 ) ) ) ) |
| 99 |
77
|
pm2.24i |
⊢ ( ¬ 𝐵 = 𝐵 → 𝐵 = 𝐶 ) |
| 100 |
76 99
|
sylbi |
⊢ ( 𝐵 ≠ 𝐵 → 𝐵 = 𝐶 ) |
| 101 |
75 100
|
syl |
⊢ ( ( ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ∧ { 𝐵 , 𝐵 } ∈ 𝐸 ) → 𝐵 = 𝐶 ) |
| 102 |
101
|
expcom |
⊢ ( { 𝐵 , 𝐵 } ∈ 𝐸 → ( ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) → 𝐵 = 𝐶 ) ) |
| 103 |
102
|
adantl |
⊢ ( ( { 𝐵 , 𝐴 } ∈ 𝐸 ∧ { 𝐵 , 𝐵 } ∈ 𝐸 ) → ( ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) → 𝐵 = 𝐶 ) ) |
| 104 |
73 103
|
sylbir |
⊢ ( { { 𝐵 , 𝐴 } , { 𝐵 , 𝐵 } } ⊆ 𝐸 → ( ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) → 𝐵 = 𝐶 ) ) |
| 105 |
104
|
com12 |
⊢ ( ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) → ( { { 𝐵 , 𝐴 } , { 𝐵 , 𝐵 } } ⊆ 𝐸 → 𝐵 = 𝐶 ) ) |
| 106 |
105
|
3ad2ant3 |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → ( { { 𝐵 , 𝐴 } , { 𝐵 , 𝐵 } } ⊆ 𝐸 → 𝐵 = 𝐶 ) ) |
| 107 |
106
|
com12 |
⊢ ( { { 𝐵 , 𝐴 } , { 𝐵 , 𝐵 } } ⊆ 𝐸 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐵 = 𝐶 ) ) |
| 108 |
107
|
2a1i |
⊢ ( 𝑦 = 𝐶 → ( { { 𝐶 , 𝐴 } , { 𝐶 , 𝐵 } } ⊆ 𝐸 → ( { { 𝐵 , 𝐴 } , { 𝐵 , 𝐵 } } ⊆ 𝐸 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐵 = 𝐶 ) ) ) ) |
| 109 |
|
eqeq2 |
⊢ ( 𝑦 = 𝐶 → ( 𝐵 = 𝑦 ↔ 𝐵 = 𝐶 ) ) |
| 110 |
109
|
imbi2d |
⊢ ( 𝑦 = 𝐶 → ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐵 = 𝑦 ) ↔ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐵 = 𝐶 ) ) ) |
| 111 |
110
|
imbi2d |
⊢ ( 𝑦 = 𝐶 → ( ( { { 𝐵 , 𝐴 } , { 𝐵 , 𝐵 } } ⊆ 𝐸 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐵 = 𝑦 ) ) ↔ ( { { 𝐵 , 𝐴 } , { 𝐵 , 𝐵 } } ⊆ 𝐸 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐵 = 𝐶 ) ) ) ) |
| 112 |
108 56 111
|
3imtr4d |
⊢ ( 𝑦 = 𝐶 → ( { { 𝑦 , 𝐴 } , { 𝑦 , 𝐵 } } ⊆ 𝐸 → ( { { 𝐵 , 𝐴 } , { 𝐵 , 𝐵 } } ⊆ 𝐸 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐵 = 𝑦 ) ) ) ) |
| 113 |
91 98 112
|
3jaoi |
⊢ ( ( 𝑦 = 𝐴 ∨ 𝑦 = 𝐵 ∨ 𝑦 = 𝐶 ) → ( { { 𝑦 , 𝐴 } , { 𝑦 , 𝐵 } } ⊆ 𝐸 → ( { { 𝐵 , 𝐴 } , { 𝐵 , 𝐵 } } ⊆ 𝐸 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐵 = 𝑦 ) ) ) ) |
| 114 |
|
preq1 |
⊢ ( 𝑥 = 𝐵 → { 𝑥 , 𝐴 } = { 𝐵 , 𝐴 } ) |
| 115 |
|
preq1 |
⊢ ( 𝑥 = 𝐵 → { 𝑥 , 𝐵 } = { 𝐵 , 𝐵 } ) |
| 116 |
114 115
|
preq12d |
⊢ ( 𝑥 = 𝐵 → { { 𝑥 , 𝐴 } , { 𝑥 , 𝐵 } } = { { 𝐵 , 𝐴 } , { 𝐵 , 𝐵 } } ) |
| 117 |
116
|
sseq1d |
⊢ ( 𝑥 = 𝐵 → ( { { 𝑥 , 𝐴 } , { 𝑥 , 𝐵 } } ⊆ 𝐸 ↔ { { 𝐵 , 𝐴 } , { 𝐵 , 𝐵 } } ⊆ 𝐸 ) ) |
| 118 |
|
eqeq1 |
⊢ ( 𝑥 = 𝐵 → ( 𝑥 = 𝑦 ↔ 𝐵 = 𝑦 ) ) |
| 119 |
118
|
imbi2d |
⊢ ( 𝑥 = 𝐵 → ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝑥 = 𝑦 ) ↔ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐵 = 𝑦 ) ) ) |
| 120 |
117 119
|
imbi12d |
⊢ ( 𝑥 = 𝐵 → ( ( { { 𝑥 , 𝐴 } , { 𝑥 , 𝐵 } } ⊆ 𝐸 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝑥 = 𝑦 ) ) ↔ ( { { 𝐵 , 𝐴 } , { 𝐵 , 𝐵 } } ⊆ 𝐸 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐵 = 𝑦 ) ) ) ) |
| 121 |
120
|
imbi2d |
⊢ ( 𝑥 = 𝐵 → ( ( { { 𝑦 , 𝐴 } , { 𝑦 , 𝐵 } } ⊆ 𝐸 → ( { { 𝑥 , 𝐴 } , { 𝑥 , 𝐵 } } ⊆ 𝐸 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝑥 = 𝑦 ) ) ) ↔ ( { { 𝑦 , 𝐴 } , { 𝑦 , 𝐵 } } ⊆ 𝐸 → ( { { 𝐵 , 𝐴 } , { 𝐵 , 𝐵 } } ⊆ 𝐸 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐵 = 𝑦 ) ) ) ) ) |
| 122 |
113 121
|
imbitrrid |
⊢ ( 𝑥 = 𝐵 → ( ( 𝑦 = 𝐴 ∨ 𝑦 = 𝐵 ∨ 𝑦 = 𝐶 ) → ( { { 𝑦 , 𝐴 } , { 𝑦 , 𝐵 } } ⊆ 𝐸 → ( { { 𝑥 , 𝐴 } , { 𝑥 , 𝐵 } } ⊆ 𝐸 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝑥 = 𝑦 ) ) ) ) ) |
| 123 |
24
|
pm2.24i |
⊢ ( ¬ 𝐴 = 𝐴 → 𝐶 = 𝐴 ) |
| 124 |
23 123
|
sylbi |
⊢ ( 𝐴 ≠ 𝐴 → 𝐶 = 𝐴 ) |
| 125 |
22 124
|
syl |
⊢ ( ( ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ∧ { 𝐴 , 𝐴 } ∈ 𝐸 ) → 𝐶 = 𝐴 ) |
| 126 |
125
|
expcom |
⊢ ( { 𝐴 , 𝐴 } ∈ 𝐸 → ( ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) → 𝐶 = 𝐴 ) ) |
| 127 |
126
|
adantr |
⊢ ( ( { 𝐴 , 𝐴 } ∈ 𝐸 ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → ( ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) → 𝐶 = 𝐴 ) ) |
| 128 |
20 127
|
sylbir |
⊢ ( { { 𝐴 , 𝐴 } , { 𝐴 , 𝐵 } } ⊆ 𝐸 → ( ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) → 𝐶 = 𝐴 ) ) |
| 129 |
128
|
com12 |
⊢ ( ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) → ( { { 𝐴 , 𝐴 } , { 𝐴 , 𝐵 } } ⊆ 𝐸 → 𝐶 = 𝐴 ) ) |
| 130 |
129
|
3ad2ant3 |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → ( { { 𝐴 , 𝐴 } , { 𝐴 , 𝐵 } } ⊆ 𝐸 → 𝐶 = 𝐴 ) ) |
| 131 |
130
|
com12 |
⊢ ( { { 𝐴 , 𝐴 } , { 𝐴 , 𝐵 } } ⊆ 𝐸 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐶 = 𝐴 ) ) |
| 132 |
131
|
a1i13 |
⊢ ( 𝑦 = 𝐴 → ( { { 𝐴 , 𝐴 } , { 𝐴 , 𝐵 } } ⊆ 𝐸 → ( { { 𝐶 , 𝐴 } , { 𝐶 , 𝐵 } } ⊆ 𝐸 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐶 = 𝐴 ) ) ) ) |
| 133 |
|
eqeq2 |
⊢ ( 𝑦 = 𝐴 → ( 𝐶 = 𝑦 ↔ 𝐶 = 𝐴 ) ) |
| 134 |
133
|
imbi2d |
⊢ ( 𝑦 = 𝐴 → ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐶 = 𝑦 ) ↔ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐶 = 𝐴 ) ) ) |
| 135 |
134
|
imbi2d |
⊢ ( 𝑦 = 𝐴 → ( ( { { 𝐶 , 𝐴 } , { 𝐶 , 𝐵 } } ⊆ 𝐸 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐶 = 𝑦 ) ) ↔ ( { { 𝐶 , 𝐴 } , { 𝐶 , 𝐵 } } ⊆ 𝐸 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐶 = 𝐴 ) ) ) ) |
| 136 |
132 13 135
|
3imtr4d |
⊢ ( 𝑦 = 𝐴 → ( { { 𝑦 , 𝐴 } , { 𝑦 , 𝐵 } } ⊆ 𝐸 → ( { { 𝐶 , 𝐴 } , { 𝐶 , 𝐵 } } ⊆ 𝐸 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐶 = 𝑦 ) ) ) ) |
| 137 |
|
pm2.21 |
⊢ ( ¬ 𝐵 = 𝐵 → ( 𝐵 = 𝐵 → ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) → 𝐶 = 𝐵 ) ) ) |
| 138 |
76 137
|
sylbi |
⊢ ( 𝐵 ≠ 𝐵 → ( 𝐵 = 𝐵 → ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) → 𝐶 = 𝐵 ) ) ) |
| 139 |
75 77 138
|
mpisyl |
⊢ ( ( ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ∧ { 𝐵 , 𝐵 } ∈ 𝐸 ) → ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) → 𝐶 = 𝐵 ) ) |
| 140 |
139
|
expcom |
⊢ ( { 𝐵 , 𝐵 } ∈ 𝐸 → ( ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) → ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) → 𝐶 = 𝐵 ) ) ) |
| 141 |
140
|
adantl |
⊢ ( ( { 𝐵 , 𝐴 } ∈ 𝐸 ∧ { 𝐵 , 𝐵 } ∈ 𝐸 ) → ( ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) → ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) → 𝐶 = 𝐵 ) ) ) |
| 142 |
73 141
|
sylbir |
⊢ ( { { 𝐵 , 𝐴 } , { 𝐵 , 𝐵 } } ⊆ 𝐸 → ( ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) → ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) → 𝐶 = 𝐵 ) ) ) |
| 143 |
142
|
com13 |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) → ( ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) → ( { { 𝐵 , 𝐴 } , { 𝐵 , 𝐵 } } ⊆ 𝐸 → 𝐶 = 𝐵 ) ) ) |
| 144 |
143
|
a1d |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) → ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) → ( ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) → ( { { 𝐵 , 𝐴 } , { 𝐵 , 𝐵 } } ⊆ 𝐸 → 𝐶 = 𝐵 ) ) ) ) |
| 145 |
144
|
3imp |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → ( { { 𝐵 , 𝐴 } , { 𝐵 , 𝐵 } } ⊆ 𝐸 → 𝐶 = 𝐵 ) ) |
| 146 |
145
|
com12 |
⊢ ( { { 𝐵 , 𝐴 } , { 𝐵 , 𝐵 } } ⊆ 𝐸 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐶 = 𝐵 ) ) |
| 147 |
146
|
a1i13 |
⊢ ( 𝑦 = 𝐵 → ( { { 𝐵 , 𝐴 } , { 𝐵 , 𝐵 } } ⊆ 𝐸 → ( { { 𝐶 , 𝐴 } , { 𝐶 , 𝐵 } } ⊆ 𝐸 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐶 = 𝐵 ) ) ) ) |
| 148 |
|
eqeq2 |
⊢ ( 𝑦 = 𝐵 → ( 𝐶 = 𝑦 ↔ 𝐶 = 𝐵 ) ) |
| 149 |
148
|
imbi2d |
⊢ ( 𝑦 = 𝐵 → ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐶 = 𝑦 ) ↔ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐶 = 𝐵 ) ) ) |
| 150 |
149
|
imbi2d |
⊢ ( 𝑦 = 𝐵 → ( ( { { 𝐶 , 𝐴 } , { 𝐶 , 𝐵 } } ⊆ 𝐸 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐶 = 𝑦 ) ) ↔ ( { { 𝐶 , 𝐴 } , { 𝐶 , 𝐵 } } ⊆ 𝐸 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐶 = 𝐵 ) ) ) ) |
| 151 |
147 38 150
|
3imtr4d |
⊢ ( 𝑦 = 𝐵 → ( { { 𝑦 , 𝐴 } , { 𝑦 , 𝐵 } } ⊆ 𝐸 → ( { { 𝐶 , 𝐴 } , { 𝐶 , 𝐵 } } ⊆ 𝐸 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐶 = 𝑦 ) ) ) ) |
| 152 |
|
eqidd |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐶 = 𝐶 ) |
| 153 |
152
|
a1i |
⊢ ( { { 𝐶 , 𝐴 } , { 𝐶 , 𝐵 } } ⊆ 𝐸 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐶 = 𝐶 ) ) |
| 154 |
153
|
a1i13 |
⊢ ( 𝑦 = 𝐶 → ( { { 𝐶 , 𝐴 } , { 𝐶 , 𝐵 } } ⊆ 𝐸 → ( { { 𝐶 , 𝐴 } , { 𝐶 , 𝐵 } } ⊆ 𝐸 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐶 = 𝐶 ) ) ) ) |
| 155 |
|
eqeq2 |
⊢ ( 𝑦 = 𝐶 → ( 𝐶 = 𝑦 ↔ 𝐶 = 𝐶 ) ) |
| 156 |
155
|
imbi2d |
⊢ ( 𝑦 = 𝐶 → ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐶 = 𝑦 ) ↔ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐶 = 𝐶 ) ) ) |
| 157 |
156
|
imbi2d |
⊢ ( 𝑦 = 𝐶 → ( ( { { 𝐶 , 𝐴 } , { 𝐶 , 𝐵 } } ⊆ 𝐸 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐶 = 𝑦 ) ) ↔ ( { { 𝐶 , 𝐴 } , { 𝐶 , 𝐵 } } ⊆ 𝐸 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐶 = 𝐶 ) ) ) ) |
| 158 |
154 56 157
|
3imtr4d |
⊢ ( 𝑦 = 𝐶 → ( { { 𝑦 , 𝐴 } , { 𝑦 , 𝐵 } } ⊆ 𝐸 → ( { { 𝐶 , 𝐴 } , { 𝐶 , 𝐵 } } ⊆ 𝐸 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐶 = 𝑦 ) ) ) ) |
| 159 |
136 151 158
|
3jaoi |
⊢ ( ( 𝑦 = 𝐴 ∨ 𝑦 = 𝐵 ∨ 𝑦 = 𝐶 ) → ( { { 𝑦 , 𝐴 } , { 𝑦 , 𝐵 } } ⊆ 𝐸 → ( { { 𝐶 , 𝐴 } , { 𝐶 , 𝐵 } } ⊆ 𝐸 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐶 = 𝑦 ) ) ) ) |
| 160 |
|
preq1 |
⊢ ( 𝑥 = 𝐶 → { 𝑥 , 𝐴 } = { 𝐶 , 𝐴 } ) |
| 161 |
|
preq1 |
⊢ ( 𝑥 = 𝐶 → { 𝑥 , 𝐵 } = { 𝐶 , 𝐵 } ) |
| 162 |
160 161
|
preq12d |
⊢ ( 𝑥 = 𝐶 → { { 𝑥 , 𝐴 } , { 𝑥 , 𝐵 } } = { { 𝐶 , 𝐴 } , { 𝐶 , 𝐵 } } ) |
| 163 |
162
|
sseq1d |
⊢ ( 𝑥 = 𝐶 → ( { { 𝑥 , 𝐴 } , { 𝑥 , 𝐵 } } ⊆ 𝐸 ↔ { { 𝐶 , 𝐴 } , { 𝐶 , 𝐵 } } ⊆ 𝐸 ) ) |
| 164 |
|
eqeq1 |
⊢ ( 𝑥 = 𝐶 → ( 𝑥 = 𝑦 ↔ 𝐶 = 𝑦 ) ) |
| 165 |
164
|
imbi2d |
⊢ ( 𝑥 = 𝐶 → ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝑥 = 𝑦 ) ↔ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐶 = 𝑦 ) ) ) |
| 166 |
163 165
|
imbi12d |
⊢ ( 𝑥 = 𝐶 → ( ( { { 𝑥 , 𝐴 } , { 𝑥 , 𝐵 } } ⊆ 𝐸 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝑥 = 𝑦 ) ) ↔ ( { { 𝐶 , 𝐴 } , { 𝐶 , 𝐵 } } ⊆ 𝐸 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐶 = 𝑦 ) ) ) ) |
| 167 |
166
|
imbi2d |
⊢ ( 𝑥 = 𝐶 → ( ( { { 𝑦 , 𝐴 } , { 𝑦 , 𝐵 } } ⊆ 𝐸 → ( { { 𝑥 , 𝐴 } , { 𝑥 , 𝐵 } } ⊆ 𝐸 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝑥 = 𝑦 ) ) ) ↔ ( { { 𝑦 , 𝐴 } , { 𝑦 , 𝐵 } } ⊆ 𝐸 → ( { { 𝐶 , 𝐴 } , { 𝐶 , 𝐵 } } ⊆ 𝐸 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐶 = 𝑦 ) ) ) ) ) |
| 168 |
159 167
|
imbitrrid |
⊢ ( 𝑥 = 𝐶 → ( ( 𝑦 = 𝐴 ∨ 𝑦 = 𝐵 ∨ 𝑦 = 𝐶 ) → ( { { 𝑦 , 𝐴 } , { 𝑦 , 𝐵 } } ⊆ 𝐸 → ( { { 𝑥 , 𝐴 } , { 𝑥 , 𝐵 } } ⊆ 𝐸 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝑥 = 𝑦 ) ) ) ) ) |
| 169 |
70 122 168
|
3jaoi |
⊢ ( ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ∨ 𝑥 = 𝐶 ) → ( ( 𝑦 = 𝐴 ∨ 𝑦 = 𝐵 ∨ 𝑦 = 𝐶 ) → ( { { 𝑦 , 𝐴 } , { 𝑦 , 𝐵 } } ⊆ 𝐸 → ( { { 𝑥 , 𝐴 } , { 𝑥 , 𝐵 } } ⊆ 𝐸 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝑥 = 𝑦 ) ) ) ) ) |
| 170 |
169
|
com3l |
⊢ ( ( 𝑦 = 𝐴 ∨ 𝑦 = 𝐵 ∨ 𝑦 = 𝐶 ) → ( { { 𝑦 , 𝐴 } , { 𝑦 , 𝐵 } } ⊆ 𝐸 → ( ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ∨ 𝑥 = 𝐶 ) → ( { { 𝑥 , 𝐴 } , { 𝑥 , 𝐵 } } ⊆ 𝐸 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝑥 = 𝑦 ) ) ) ) ) |
| 171 |
6 170
|
sylbi |
⊢ ( 𝑦 ∈ { 𝐴 , 𝐵 , 𝐶 } → ( { { 𝑦 , 𝐴 } , { 𝑦 , 𝐵 } } ⊆ 𝐸 → ( ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ∨ 𝑥 = 𝐶 ) → ( { { 𝑥 , 𝐴 } , { 𝑥 , 𝐵 } } ⊆ 𝐸 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝑥 = 𝑦 ) ) ) ) ) |
| 172 |
171
|
imp |
⊢ ( ( 𝑦 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ { { 𝑦 , 𝐴 } , { 𝑦 , 𝐵 } } ⊆ 𝐸 ) → ( ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ∨ 𝑥 = 𝐶 ) → ( { { 𝑥 , 𝐴 } , { 𝑥 , 𝐵 } } ⊆ 𝐸 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝑥 = 𝑦 ) ) ) ) |
| 173 |
172
|
com3l |
⊢ ( ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ∨ 𝑥 = 𝐶 ) → ( { { 𝑥 , 𝐴 } , { 𝑥 , 𝐵 } } ⊆ 𝐸 → ( ( 𝑦 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ { { 𝑦 , 𝐴 } , { 𝑦 , 𝐵 } } ⊆ 𝐸 ) → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝑥 = 𝑦 ) ) ) ) |
| 174 |
4 173
|
sylbi |
⊢ ( 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } → ( { { 𝑥 , 𝐴 } , { 𝑥 , 𝐵 } } ⊆ 𝐸 → ( ( 𝑦 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ { { 𝑦 , 𝐴 } , { 𝑦 , 𝐵 } } ⊆ 𝐸 ) → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝑥 = 𝑦 ) ) ) ) |
| 175 |
174
|
imp31 |
⊢ ( ( ( 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ { { 𝑥 , 𝐴 } , { 𝑥 , 𝐵 } } ⊆ 𝐸 ) ∧ ( 𝑦 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ { { 𝑦 , 𝐴 } , { 𝑦 , 𝐵 } } ⊆ 𝐸 ) ) → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝑥 = 𝑦 ) ) |
| 176 |
175
|
com12 |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → ( ( ( 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ { { 𝑥 , 𝐴 } , { 𝑥 , 𝐵 } } ⊆ 𝐸 ) ∧ ( 𝑦 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ { { 𝑦 , 𝐴 } , { 𝑦 , 𝐵 } } ⊆ 𝐸 ) ) → 𝑥 = 𝑦 ) ) |
| 177 |
176
|
alrimivv |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → ∀ 𝑥 ∀ 𝑦 ( ( ( 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ { { 𝑥 , 𝐴 } , { 𝑥 , 𝐵 } } ⊆ 𝐸 ) ∧ ( 𝑦 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ { { 𝑦 , 𝐴 } , { 𝑦 , 𝐵 } } ⊆ 𝐸 ) ) → 𝑥 = 𝑦 ) ) |