Step |
Hyp |
Ref |
Expression |
1 |
|
frgr3v.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
frgr3v.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
3 |
|
vex |
⊢ 𝑥 ∈ V |
4 |
3
|
eltp |
⊢ ( 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } ↔ ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ∨ 𝑥 = 𝐶 ) ) |
5 |
|
vex |
⊢ 𝑦 ∈ V |
6 |
5
|
eltp |
⊢ ( 𝑦 ∈ { 𝐴 , 𝐵 , 𝐶 } ↔ ( 𝑦 = 𝐴 ∨ 𝑦 = 𝐵 ∨ 𝑦 = 𝐶 ) ) |
7 |
|
eqidd |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐴 = 𝐴 ) |
8 |
7
|
a1i |
⊢ ( { { 𝐴 , 𝐴 } , { 𝐴 , 𝐵 } } ⊆ 𝐸 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐴 = 𝐴 ) ) |
9 |
8
|
a1i13 |
⊢ ( 𝑦 = 𝐴 → ( { { 𝐴 , 𝐴 } , { 𝐴 , 𝐵 } } ⊆ 𝐸 → ( { { 𝐴 , 𝐴 } , { 𝐴 , 𝐵 } } ⊆ 𝐸 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐴 = 𝐴 ) ) ) ) |
10 |
|
preq1 |
⊢ ( 𝑦 = 𝐴 → { 𝑦 , 𝐴 } = { 𝐴 , 𝐴 } ) |
11 |
|
preq1 |
⊢ ( 𝑦 = 𝐴 → { 𝑦 , 𝐵 } = { 𝐴 , 𝐵 } ) |
12 |
10 11
|
preq12d |
⊢ ( 𝑦 = 𝐴 → { { 𝑦 , 𝐴 } , { 𝑦 , 𝐵 } } = { { 𝐴 , 𝐴 } , { 𝐴 , 𝐵 } } ) |
13 |
12
|
sseq1d |
⊢ ( 𝑦 = 𝐴 → ( { { 𝑦 , 𝐴 } , { 𝑦 , 𝐵 } } ⊆ 𝐸 ↔ { { 𝐴 , 𝐴 } , { 𝐴 , 𝐵 } } ⊆ 𝐸 ) ) |
14 |
|
eqeq2 |
⊢ ( 𝑦 = 𝐴 → ( 𝐴 = 𝑦 ↔ 𝐴 = 𝐴 ) ) |
15 |
14
|
imbi2d |
⊢ ( 𝑦 = 𝐴 → ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐴 = 𝑦 ) ↔ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐴 = 𝐴 ) ) ) |
16 |
15
|
imbi2d |
⊢ ( 𝑦 = 𝐴 → ( ( { { 𝐴 , 𝐴 } , { 𝐴 , 𝐵 } } ⊆ 𝐸 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐴 = 𝑦 ) ) ↔ ( { { 𝐴 , 𝐴 } , { 𝐴 , 𝐵 } } ⊆ 𝐸 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐴 = 𝐴 ) ) ) ) |
17 |
9 13 16
|
3imtr4d |
⊢ ( 𝑦 = 𝐴 → ( { { 𝑦 , 𝐴 } , { 𝑦 , 𝐵 } } ⊆ 𝐸 → ( { { 𝐴 , 𝐴 } , { 𝐴 , 𝐵 } } ⊆ 𝐸 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐴 = 𝑦 ) ) ) ) |
18 |
|
prex |
⊢ { 𝐴 , 𝐴 } ∈ V |
19 |
|
prex |
⊢ { 𝐴 , 𝐵 } ∈ V |
20 |
18 19
|
prss |
⊢ ( ( { 𝐴 , 𝐴 } ∈ 𝐸 ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) ↔ { { 𝐴 , 𝐴 } , { 𝐴 , 𝐵 } } ⊆ 𝐸 ) |
21 |
2
|
usgredgne |
⊢ ( ( 𝐺 ∈ USGraph ∧ { 𝐴 , 𝐴 } ∈ 𝐸 ) → 𝐴 ≠ 𝐴 ) |
22 |
21
|
adantll |
⊢ ( ( ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ∧ { 𝐴 , 𝐴 } ∈ 𝐸 ) → 𝐴 ≠ 𝐴 ) |
23 |
|
df-ne |
⊢ ( 𝐴 ≠ 𝐴 ↔ ¬ 𝐴 = 𝐴 ) |
24 |
|
eqid |
⊢ 𝐴 = 𝐴 |
25 |
24
|
pm2.24i |
⊢ ( ¬ 𝐴 = 𝐴 → 𝐴 = 𝐵 ) |
26 |
23 25
|
sylbi |
⊢ ( 𝐴 ≠ 𝐴 → 𝐴 = 𝐵 ) |
27 |
22 26
|
syl |
⊢ ( ( ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ∧ { 𝐴 , 𝐴 } ∈ 𝐸 ) → 𝐴 = 𝐵 ) |
28 |
27
|
expcom |
⊢ ( { 𝐴 , 𝐴 } ∈ 𝐸 → ( ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) → 𝐴 = 𝐵 ) ) |
29 |
28
|
adantr |
⊢ ( ( { 𝐴 , 𝐴 } ∈ 𝐸 ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → ( ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) → 𝐴 = 𝐵 ) ) |
30 |
20 29
|
sylbir |
⊢ ( { { 𝐴 , 𝐴 } , { 𝐴 , 𝐵 } } ⊆ 𝐸 → ( ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) → 𝐴 = 𝐵 ) ) |
31 |
30
|
com12 |
⊢ ( ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) → ( { { 𝐴 , 𝐴 } , { 𝐴 , 𝐵 } } ⊆ 𝐸 → 𝐴 = 𝐵 ) ) |
32 |
31
|
3ad2ant3 |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → ( { { 𝐴 , 𝐴 } , { 𝐴 , 𝐵 } } ⊆ 𝐸 → 𝐴 = 𝐵 ) ) |
33 |
32
|
com12 |
⊢ ( { { 𝐴 , 𝐴 } , { 𝐴 , 𝐵 } } ⊆ 𝐸 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐴 = 𝐵 ) ) |
34 |
33
|
2a1i |
⊢ ( 𝑦 = 𝐵 → ( { { 𝐵 , 𝐴 } , { 𝐵 , 𝐵 } } ⊆ 𝐸 → ( { { 𝐴 , 𝐴 } , { 𝐴 , 𝐵 } } ⊆ 𝐸 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐴 = 𝐵 ) ) ) ) |
35 |
|
preq1 |
⊢ ( 𝑦 = 𝐵 → { 𝑦 , 𝐴 } = { 𝐵 , 𝐴 } ) |
36 |
|
preq1 |
⊢ ( 𝑦 = 𝐵 → { 𝑦 , 𝐵 } = { 𝐵 , 𝐵 } ) |
37 |
35 36
|
preq12d |
⊢ ( 𝑦 = 𝐵 → { { 𝑦 , 𝐴 } , { 𝑦 , 𝐵 } } = { { 𝐵 , 𝐴 } , { 𝐵 , 𝐵 } } ) |
38 |
37
|
sseq1d |
⊢ ( 𝑦 = 𝐵 → ( { { 𝑦 , 𝐴 } , { 𝑦 , 𝐵 } } ⊆ 𝐸 ↔ { { 𝐵 , 𝐴 } , { 𝐵 , 𝐵 } } ⊆ 𝐸 ) ) |
39 |
|
eqeq2 |
⊢ ( 𝑦 = 𝐵 → ( 𝐴 = 𝑦 ↔ 𝐴 = 𝐵 ) ) |
40 |
39
|
imbi2d |
⊢ ( 𝑦 = 𝐵 → ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐴 = 𝑦 ) ↔ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐴 = 𝐵 ) ) ) |
41 |
40
|
imbi2d |
⊢ ( 𝑦 = 𝐵 → ( ( { { 𝐴 , 𝐴 } , { 𝐴 , 𝐵 } } ⊆ 𝐸 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐴 = 𝑦 ) ) ↔ ( { { 𝐴 , 𝐴 } , { 𝐴 , 𝐵 } } ⊆ 𝐸 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐴 = 𝐵 ) ) ) ) |
42 |
34 38 41
|
3imtr4d |
⊢ ( 𝑦 = 𝐵 → ( { { 𝑦 , 𝐴 } , { 𝑦 , 𝐵 } } ⊆ 𝐸 → ( { { 𝐴 , 𝐴 } , { 𝐴 , 𝐵 } } ⊆ 𝐸 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐴 = 𝑦 ) ) ) ) |
43 |
24
|
pm2.24i |
⊢ ( ¬ 𝐴 = 𝐴 → 𝐴 = 𝐶 ) |
44 |
23 43
|
sylbi |
⊢ ( 𝐴 ≠ 𝐴 → 𝐴 = 𝐶 ) |
45 |
22 44
|
syl |
⊢ ( ( ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ∧ { 𝐴 , 𝐴 } ∈ 𝐸 ) → 𝐴 = 𝐶 ) |
46 |
45
|
expcom |
⊢ ( { 𝐴 , 𝐴 } ∈ 𝐸 → ( ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) → 𝐴 = 𝐶 ) ) |
47 |
46
|
adantr |
⊢ ( ( { 𝐴 , 𝐴 } ∈ 𝐸 ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → ( ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) → 𝐴 = 𝐶 ) ) |
48 |
20 47
|
sylbir |
⊢ ( { { 𝐴 , 𝐴 } , { 𝐴 , 𝐵 } } ⊆ 𝐸 → ( ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) → 𝐴 = 𝐶 ) ) |
49 |
48
|
com12 |
⊢ ( ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) → ( { { 𝐴 , 𝐴 } , { 𝐴 , 𝐵 } } ⊆ 𝐸 → 𝐴 = 𝐶 ) ) |
50 |
49
|
3ad2ant3 |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → ( { { 𝐴 , 𝐴 } , { 𝐴 , 𝐵 } } ⊆ 𝐸 → 𝐴 = 𝐶 ) ) |
51 |
50
|
com12 |
⊢ ( { { 𝐴 , 𝐴 } , { 𝐴 , 𝐵 } } ⊆ 𝐸 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐴 = 𝐶 ) ) |
52 |
51
|
2a1i |
⊢ ( 𝑦 = 𝐶 → ( { { 𝐶 , 𝐴 } , { 𝐶 , 𝐵 } } ⊆ 𝐸 → ( { { 𝐴 , 𝐴 } , { 𝐴 , 𝐵 } } ⊆ 𝐸 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐴 = 𝐶 ) ) ) ) |
53 |
|
preq1 |
⊢ ( 𝑦 = 𝐶 → { 𝑦 , 𝐴 } = { 𝐶 , 𝐴 } ) |
54 |
|
preq1 |
⊢ ( 𝑦 = 𝐶 → { 𝑦 , 𝐵 } = { 𝐶 , 𝐵 } ) |
55 |
53 54
|
preq12d |
⊢ ( 𝑦 = 𝐶 → { { 𝑦 , 𝐴 } , { 𝑦 , 𝐵 } } = { { 𝐶 , 𝐴 } , { 𝐶 , 𝐵 } } ) |
56 |
55
|
sseq1d |
⊢ ( 𝑦 = 𝐶 → ( { { 𝑦 , 𝐴 } , { 𝑦 , 𝐵 } } ⊆ 𝐸 ↔ { { 𝐶 , 𝐴 } , { 𝐶 , 𝐵 } } ⊆ 𝐸 ) ) |
57 |
|
eqeq2 |
⊢ ( 𝑦 = 𝐶 → ( 𝐴 = 𝑦 ↔ 𝐴 = 𝐶 ) ) |
58 |
57
|
imbi2d |
⊢ ( 𝑦 = 𝐶 → ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐴 = 𝑦 ) ↔ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐴 = 𝐶 ) ) ) |
59 |
58
|
imbi2d |
⊢ ( 𝑦 = 𝐶 → ( ( { { 𝐴 , 𝐴 } , { 𝐴 , 𝐵 } } ⊆ 𝐸 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐴 = 𝑦 ) ) ↔ ( { { 𝐴 , 𝐴 } , { 𝐴 , 𝐵 } } ⊆ 𝐸 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐴 = 𝐶 ) ) ) ) |
60 |
52 56 59
|
3imtr4d |
⊢ ( 𝑦 = 𝐶 → ( { { 𝑦 , 𝐴 } , { 𝑦 , 𝐵 } } ⊆ 𝐸 → ( { { 𝐴 , 𝐴 } , { 𝐴 , 𝐵 } } ⊆ 𝐸 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐴 = 𝑦 ) ) ) ) |
61 |
17 42 60
|
3jaoi |
⊢ ( ( 𝑦 = 𝐴 ∨ 𝑦 = 𝐵 ∨ 𝑦 = 𝐶 ) → ( { { 𝑦 , 𝐴 } , { 𝑦 , 𝐵 } } ⊆ 𝐸 → ( { { 𝐴 , 𝐴 } , { 𝐴 , 𝐵 } } ⊆ 𝐸 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐴 = 𝑦 ) ) ) ) |
62 |
|
preq1 |
⊢ ( 𝑥 = 𝐴 → { 𝑥 , 𝐴 } = { 𝐴 , 𝐴 } ) |
63 |
|
preq1 |
⊢ ( 𝑥 = 𝐴 → { 𝑥 , 𝐵 } = { 𝐴 , 𝐵 } ) |
64 |
62 63
|
preq12d |
⊢ ( 𝑥 = 𝐴 → { { 𝑥 , 𝐴 } , { 𝑥 , 𝐵 } } = { { 𝐴 , 𝐴 } , { 𝐴 , 𝐵 } } ) |
65 |
64
|
sseq1d |
⊢ ( 𝑥 = 𝐴 → ( { { 𝑥 , 𝐴 } , { 𝑥 , 𝐵 } } ⊆ 𝐸 ↔ { { 𝐴 , 𝐴 } , { 𝐴 , 𝐵 } } ⊆ 𝐸 ) ) |
66 |
|
eqeq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 = 𝑦 ↔ 𝐴 = 𝑦 ) ) |
67 |
66
|
imbi2d |
⊢ ( 𝑥 = 𝐴 → ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝑥 = 𝑦 ) ↔ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐴 = 𝑦 ) ) ) |
68 |
65 67
|
imbi12d |
⊢ ( 𝑥 = 𝐴 → ( ( { { 𝑥 , 𝐴 } , { 𝑥 , 𝐵 } } ⊆ 𝐸 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝑥 = 𝑦 ) ) ↔ ( { { 𝐴 , 𝐴 } , { 𝐴 , 𝐵 } } ⊆ 𝐸 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐴 = 𝑦 ) ) ) ) |
69 |
68
|
imbi2d |
⊢ ( 𝑥 = 𝐴 → ( ( { { 𝑦 , 𝐴 } , { 𝑦 , 𝐵 } } ⊆ 𝐸 → ( { { 𝑥 , 𝐴 } , { 𝑥 , 𝐵 } } ⊆ 𝐸 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝑥 = 𝑦 ) ) ) ↔ ( { { 𝑦 , 𝐴 } , { 𝑦 , 𝐵 } } ⊆ 𝐸 → ( { { 𝐴 , 𝐴 } , { 𝐴 , 𝐵 } } ⊆ 𝐸 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐴 = 𝑦 ) ) ) ) ) |
70 |
61 69
|
syl5ibr |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑦 = 𝐴 ∨ 𝑦 = 𝐵 ∨ 𝑦 = 𝐶 ) → ( { { 𝑦 , 𝐴 } , { 𝑦 , 𝐵 } } ⊆ 𝐸 → ( { { 𝑥 , 𝐴 } , { 𝑥 , 𝐵 } } ⊆ 𝐸 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝑥 = 𝑦 ) ) ) ) ) |
71 |
|
prex |
⊢ { 𝐵 , 𝐴 } ∈ V |
72 |
|
prex |
⊢ { 𝐵 , 𝐵 } ∈ V |
73 |
71 72
|
prss |
⊢ ( ( { 𝐵 , 𝐴 } ∈ 𝐸 ∧ { 𝐵 , 𝐵 } ∈ 𝐸 ) ↔ { { 𝐵 , 𝐴 } , { 𝐵 , 𝐵 } } ⊆ 𝐸 ) |
74 |
2
|
usgredgne |
⊢ ( ( 𝐺 ∈ USGraph ∧ { 𝐵 , 𝐵 } ∈ 𝐸 ) → 𝐵 ≠ 𝐵 ) |
75 |
74
|
adantll |
⊢ ( ( ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ∧ { 𝐵 , 𝐵 } ∈ 𝐸 ) → 𝐵 ≠ 𝐵 ) |
76 |
|
df-ne |
⊢ ( 𝐵 ≠ 𝐵 ↔ ¬ 𝐵 = 𝐵 ) |
77 |
|
eqid |
⊢ 𝐵 = 𝐵 |
78 |
77
|
pm2.24i |
⊢ ( ¬ 𝐵 = 𝐵 → 𝐵 = 𝐴 ) |
79 |
76 78
|
sylbi |
⊢ ( 𝐵 ≠ 𝐵 → 𝐵 = 𝐴 ) |
80 |
75 79
|
syl |
⊢ ( ( ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ∧ { 𝐵 , 𝐵 } ∈ 𝐸 ) → 𝐵 = 𝐴 ) |
81 |
80
|
expcom |
⊢ ( { 𝐵 , 𝐵 } ∈ 𝐸 → ( ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) → 𝐵 = 𝐴 ) ) |
82 |
81
|
adantl |
⊢ ( ( { 𝐵 , 𝐴 } ∈ 𝐸 ∧ { 𝐵 , 𝐵 } ∈ 𝐸 ) → ( ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) → 𝐵 = 𝐴 ) ) |
83 |
73 82
|
sylbir |
⊢ ( { { 𝐵 , 𝐴 } , { 𝐵 , 𝐵 } } ⊆ 𝐸 → ( ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) → 𝐵 = 𝐴 ) ) |
84 |
83
|
com12 |
⊢ ( ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) → ( { { 𝐵 , 𝐴 } , { 𝐵 , 𝐵 } } ⊆ 𝐸 → 𝐵 = 𝐴 ) ) |
85 |
84
|
3ad2ant3 |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → ( { { 𝐵 , 𝐴 } , { 𝐵 , 𝐵 } } ⊆ 𝐸 → 𝐵 = 𝐴 ) ) |
86 |
85
|
com12 |
⊢ ( { { 𝐵 , 𝐴 } , { 𝐵 , 𝐵 } } ⊆ 𝐸 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐵 = 𝐴 ) ) |
87 |
86
|
2a1i |
⊢ ( 𝑦 = 𝐴 → ( { { 𝐴 , 𝐴 } , { 𝐴 , 𝐵 } } ⊆ 𝐸 → ( { { 𝐵 , 𝐴 } , { 𝐵 , 𝐵 } } ⊆ 𝐸 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐵 = 𝐴 ) ) ) ) |
88 |
|
eqeq2 |
⊢ ( 𝑦 = 𝐴 → ( 𝐵 = 𝑦 ↔ 𝐵 = 𝐴 ) ) |
89 |
88
|
imbi2d |
⊢ ( 𝑦 = 𝐴 → ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐵 = 𝑦 ) ↔ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐵 = 𝐴 ) ) ) |
90 |
89
|
imbi2d |
⊢ ( 𝑦 = 𝐴 → ( ( { { 𝐵 , 𝐴 } , { 𝐵 , 𝐵 } } ⊆ 𝐸 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐵 = 𝑦 ) ) ↔ ( { { 𝐵 , 𝐴 } , { 𝐵 , 𝐵 } } ⊆ 𝐸 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐵 = 𝐴 ) ) ) ) |
91 |
87 13 90
|
3imtr4d |
⊢ ( 𝑦 = 𝐴 → ( { { 𝑦 , 𝐴 } , { 𝑦 , 𝐵 } } ⊆ 𝐸 → ( { { 𝐵 , 𝐴 } , { 𝐵 , 𝐵 } } ⊆ 𝐸 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐵 = 𝑦 ) ) ) ) |
92 |
|
eqidd |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐵 = 𝐵 ) |
93 |
92
|
a1i |
⊢ ( { { 𝐵 , 𝐴 } , { 𝐵 , 𝐵 } } ⊆ 𝐸 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐵 = 𝐵 ) ) |
94 |
93
|
a1i13 |
⊢ ( 𝑦 = 𝐵 → ( { { 𝐵 , 𝐴 } , { 𝐵 , 𝐵 } } ⊆ 𝐸 → ( { { 𝐵 , 𝐴 } , { 𝐵 , 𝐵 } } ⊆ 𝐸 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐵 = 𝐵 ) ) ) ) |
95 |
|
eqeq2 |
⊢ ( 𝑦 = 𝐵 → ( 𝐵 = 𝑦 ↔ 𝐵 = 𝐵 ) ) |
96 |
95
|
imbi2d |
⊢ ( 𝑦 = 𝐵 → ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐵 = 𝑦 ) ↔ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐵 = 𝐵 ) ) ) |
97 |
96
|
imbi2d |
⊢ ( 𝑦 = 𝐵 → ( ( { { 𝐵 , 𝐴 } , { 𝐵 , 𝐵 } } ⊆ 𝐸 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐵 = 𝑦 ) ) ↔ ( { { 𝐵 , 𝐴 } , { 𝐵 , 𝐵 } } ⊆ 𝐸 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐵 = 𝐵 ) ) ) ) |
98 |
94 38 97
|
3imtr4d |
⊢ ( 𝑦 = 𝐵 → ( { { 𝑦 , 𝐴 } , { 𝑦 , 𝐵 } } ⊆ 𝐸 → ( { { 𝐵 , 𝐴 } , { 𝐵 , 𝐵 } } ⊆ 𝐸 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐵 = 𝑦 ) ) ) ) |
99 |
77
|
pm2.24i |
⊢ ( ¬ 𝐵 = 𝐵 → 𝐵 = 𝐶 ) |
100 |
76 99
|
sylbi |
⊢ ( 𝐵 ≠ 𝐵 → 𝐵 = 𝐶 ) |
101 |
75 100
|
syl |
⊢ ( ( ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ∧ { 𝐵 , 𝐵 } ∈ 𝐸 ) → 𝐵 = 𝐶 ) |
102 |
101
|
expcom |
⊢ ( { 𝐵 , 𝐵 } ∈ 𝐸 → ( ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) → 𝐵 = 𝐶 ) ) |
103 |
102
|
adantl |
⊢ ( ( { 𝐵 , 𝐴 } ∈ 𝐸 ∧ { 𝐵 , 𝐵 } ∈ 𝐸 ) → ( ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) → 𝐵 = 𝐶 ) ) |
104 |
73 103
|
sylbir |
⊢ ( { { 𝐵 , 𝐴 } , { 𝐵 , 𝐵 } } ⊆ 𝐸 → ( ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) → 𝐵 = 𝐶 ) ) |
105 |
104
|
com12 |
⊢ ( ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) → ( { { 𝐵 , 𝐴 } , { 𝐵 , 𝐵 } } ⊆ 𝐸 → 𝐵 = 𝐶 ) ) |
106 |
105
|
3ad2ant3 |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → ( { { 𝐵 , 𝐴 } , { 𝐵 , 𝐵 } } ⊆ 𝐸 → 𝐵 = 𝐶 ) ) |
107 |
106
|
com12 |
⊢ ( { { 𝐵 , 𝐴 } , { 𝐵 , 𝐵 } } ⊆ 𝐸 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐵 = 𝐶 ) ) |
108 |
107
|
2a1i |
⊢ ( 𝑦 = 𝐶 → ( { { 𝐶 , 𝐴 } , { 𝐶 , 𝐵 } } ⊆ 𝐸 → ( { { 𝐵 , 𝐴 } , { 𝐵 , 𝐵 } } ⊆ 𝐸 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐵 = 𝐶 ) ) ) ) |
109 |
|
eqeq2 |
⊢ ( 𝑦 = 𝐶 → ( 𝐵 = 𝑦 ↔ 𝐵 = 𝐶 ) ) |
110 |
109
|
imbi2d |
⊢ ( 𝑦 = 𝐶 → ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐵 = 𝑦 ) ↔ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐵 = 𝐶 ) ) ) |
111 |
110
|
imbi2d |
⊢ ( 𝑦 = 𝐶 → ( ( { { 𝐵 , 𝐴 } , { 𝐵 , 𝐵 } } ⊆ 𝐸 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐵 = 𝑦 ) ) ↔ ( { { 𝐵 , 𝐴 } , { 𝐵 , 𝐵 } } ⊆ 𝐸 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐵 = 𝐶 ) ) ) ) |
112 |
108 56 111
|
3imtr4d |
⊢ ( 𝑦 = 𝐶 → ( { { 𝑦 , 𝐴 } , { 𝑦 , 𝐵 } } ⊆ 𝐸 → ( { { 𝐵 , 𝐴 } , { 𝐵 , 𝐵 } } ⊆ 𝐸 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐵 = 𝑦 ) ) ) ) |
113 |
91 98 112
|
3jaoi |
⊢ ( ( 𝑦 = 𝐴 ∨ 𝑦 = 𝐵 ∨ 𝑦 = 𝐶 ) → ( { { 𝑦 , 𝐴 } , { 𝑦 , 𝐵 } } ⊆ 𝐸 → ( { { 𝐵 , 𝐴 } , { 𝐵 , 𝐵 } } ⊆ 𝐸 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐵 = 𝑦 ) ) ) ) |
114 |
|
preq1 |
⊢ ( 𝑥 = 𝐵 → { 𝑥 , 𝐴 } = { 𝐵 , 𝐴 } ) |
115 |
|
preq1 |
⊢ ( 𝑥 = 𝐵 → { 𝑥 , 𝐵 } = { 𝐵 , 𝐵 } ) |
116 |
114 115
|
preq12d |
⊢ ( 𝑥 = 𝐵 → { { 𝑥 , 𝐴 } , { 𝑥 , 𝐵 } } = { { 𝐵 , 𝐴 } , { 𝐵 , 𝐵 } } ) |
117 |
116
|
sseq1d |
⊢ ( 𝑥 = 𝐵 → ( { { 𝑥 , 𝐴 } , { 𝑥 , 𝐵 } } ⊆ 𝐸 ↔ { { 𝐵 , 𝐴 } , { 𝐵 , 𝐵 } } ⊆ 𝐸 ) ) |
118 |
|
eqeq1 |
⊢ ( 𝑥 = 𝐵 → ( 𝑥 = 𝑦 ↔ 𝐵 = 𝑦 ) ) |
119 |
118
|
imbi2d |
⊢ ( 𝑥 = 𝐵 → ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝑥 = 𝑦 ) ↔ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐵 = 𝑦 ) ) ) |
120 |
117 119
|
imbi12d |
⊢ ( 𝑥 = 𝐵 → ( ( { { 𝑥 , 𝐴 } , { 𝑥 , 𝐵 } } ⊆ 𝐸 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝑥 = 𝑦 ) ) ↔ ( { { 𝐵 , 𝐴 } , { 𝐵 , 𝐵 } } ⊆ 𝐸 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐵 = 𝑦 ) ) ) ) |
121 |
120
|
imbi2d |
⊢ ( 𝑥 = 𝐵 → ( ( { { 𝑦 , 𝐴 } , { 𝑦 , 𝐵 } } ⊆ 𝐸 → ( { { 𝑥 , 𝐴 } , { 𝑥 , 𝐵 } } ⊆ 𝐸 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝑥 = 𝑦 ) ) ) ↔ ( { { 𝑦 , 𝐴 } , { 𝑦 , 𝐵 } } ⊆ 𝐸 → ( { { 𝐵 , 𝐴 } , { 𝐵 , 𝐵 } } ⊆ 𝐸 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐵 = 𝑦 ) ) ) ) ) |
122 |
113 121
|
syl5ibr |
⊢ ( 𝑥 = 𝐵 → ( ( 𝑦 = 𝐴 ∨ 𝑦 = 𝐵 ∨ 𝑦 = 𝐶 ) → ( { { 𝑦 , 𝐴 } , { 𝑦 , 𝐵 } } ⊆ 𝐸 → ( { { 𝑥 , 𝐴 } , { 𝑥 , 𝐵 } } ⊆ 𝐸 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝑥 = 𝑦 ) ) ) ) ) |
123 |
24
|
pm2.24i |
⊢ ( ¬ 𝐴 = 𝐴 → 𝐶 = 𝐴 ) |
124 |
23 123
|
sylbi |
⊢ ( 𝐴 ≠ 𝐴 → 𝐶 = 𝐴 ) |
125 |
22 124
|
syl |
⊢ ( ( ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ∧ { 𝐴 , 𝐴 } ∈ 𝐸 ) → 𝐶 = 𝐴 ) |
126 |
125
|
expcom |
⊢ ( { 𝐴 , 𝐴 } ∈ 𝐸 → ( ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) → 𝐶 = 𝐴 ) ) |
127 |
126
|
adantr |
⊢ ( ( { 𝐴 , 𝐴 } ∈ 𝐸 ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → ( ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) → 𝐶 = 𝐴 ) ) |
128 |
20 127
|
sylbir |
⊢ ( { { 𝐴 , 𝐴 } , { 𝐴 , 𝐵 } } ⊆ 𝐸 → ( ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) → 𝐶 = 𝐴 ) ) |
129 |
128
|
com12 |
⊢ ( ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) → ( { { 𝐴 , 𝐴 } , { 𝐴 , 𝐵 } } ⊆ 𝐸 → 𝐶 = 𝐴 ) ) |
130 |
129
|
3ad2ant3 |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → ( { { 𝐴 , 𝐴 } , { 𝐴 , 𝐵 } } ⊆ 𝐸 → 𝐶 = 𝐴 ) ) |
131 |
130
|
com12 |
⊢ ( { { 𝐴 , 𝐴 } , { 𝐴 , 𝐵 } } ⊆ 𝐸 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐶 = 𝐴 ) ) |
132 |
131
|
a1i13 |
⊢ ( 𝑦 = 𝐴 → ( { { 𝐴 , 𝐴 } , { 𝐴 , 𝐵 } } ⊆ 𝐸 → ( { { 𝐶 , 𝐴 } , { 𝐶 , 𝐵 } } ⊆ 𝐸 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐶 = 𝐴 ) ) ) ) |
133 |
|
eqeq2 |
⊢ ( 𝑦 = 𝐴 → ( 𝐶 = 𝑦 ↔ 𝐶 = 𝐴 ) ) |
134 |
133
|
imbi2d |
⊢ ( 𝑦 = 𝐴 → ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐶 = 𝑦 ) ↔ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐶 = 𝐴 ) ) ) |
135 |
134
|
imbi2d |
⊢ ( 𝑦 = 𝐴 → ( ( { { 𝐶 , 𝐴 } , { 𝐶 , 𝐵 } } ⊆ 𝐸 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐶 = 𝑦 ) ) ↔ ( { { 𝐶 , 𝐴 } , { 𝐶 , 𝐵 } } ⊆ 𝐸 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐶 = 𝐴 ) ) ) ) |
136 |
132 13 135
|
3imtr4d |
⊢ ( 𝑦 = 𝐴 → ( { { 𝑦 , 𝐴 } , { 𝑦 , 𝐵 } } ⊆ 𝐸 → ( { { 𝐶 , 𝐴 } , { 𝐶 , 𝐵 } } ⊆ 𝐸 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐶 = 𝑦 ) ) ) ) |
137 |
|
pm2.21 |
⊢ ( ¬ 𝐵 = 𝐵 → ( 𝐵 = 𝐵 → ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) → 𝐶 = 𝐵 ) ) ) |
138 |
76 137
|
sylbi |
⊢ ( 𝐵 ≠ 𝐵 → ( 𝐵 = 𝐵 → ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) → 𝐶 = 𝐵 ) ) ) |
139 |
75 77 138
|
mpisyl |
⊢ ( ( ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ∧ { 𝐵 , 𝐵 } ∈ 𝐸 ) → ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) → 𝐶 = 𝐵 ) ) |
140 |
139
|
expcom |
⊢ ( { 𝐵 , 𝐵 } ∈ 𝐸 → ( ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) → ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) → 𝐶 = 𝐵 ) ) ) |
141 |
140
|
adantl |
⊢ ( ( { 𝐵 , 𝐴 } ∈ 𝐸 ∧ { 𝐵 , 𝐵 } ∈ 𝐸 ) → ( ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) → ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) → 𝐶 = 𝐵 ) ) ) |
142 |
73 141
|
sylbir |
⊢ ( { { 𝐵 , 𝐴 } , { 𝐵 , 𝐵 } } ⊆ 𝐸 → ( ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) → ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) → 𝐶 = 𝐵 ) ) ) |
143 |
142
|
com13 |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) → ( ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) → ( { { 𝐵 , 𝐴 } , { 𝐵 , 𝐵 } } ⊆ 𝐸 → 𝐶 = 𝐵 ) ) ) |
144 |
143
|
a1d |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) → ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) → ( ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) → ( { { 𝐵 , 𝐴 } , { 𝐵 , 𝐵 } } ⊆ 𝐸 → 𝐶 = 𝐵 ) ) ) ) |
145 |
144
|
3imp |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → ( { { 𝐵 , 𝐴 } , { 𝐵 , 𝐵 } } ⊆ 𝐸 → 𝐶 = 𝐵 ) ) |
146 |
145
|
com12 |
⊢ ( { { 𝐵 , 𝐴 } , { 𝐵 , 𝐵 } } ⊆ 𝐸 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐶 = 𝐵 ) ) |
147 |
146
|
a1i13 |
⊢ ( 𝑦 = 𝐵 → ( { { 𝐵 , 𝐴 } , { 𝐵 , 𝐵 } } ⊆ 𝐸 → ( { { 𝐶 , 𝐴 } , { 𝐶 , 𝐵 } } ⊆ 𝐸 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐶 = 𝐵 ) ) ) ) |
148 |
|
eqeq2 |
⊢ ( 𝑦 = 𝐵 → ( 𝐶 = 𝑦 ↔ 𝐶 = 𝐵 ) ) |
149 |
148
|
imbi2d |
⊢ ( 𝑦 = 𝐵 → ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐶 = 𝑦 ) ↔ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐶 = 𝐵 ) ) ) |
150 |
149
|
imbi2d |
⊢ ( 𝑦 = 𝐵 → ( ( { { 𝐶 , 𝐴 } , { 𝐶 , 𝐵 } } ⊆ 𝐸 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐶 = 𝑦 ) ) ↔ ( { { 𝐶 , 𝐴 } , { 𝐶 , 𝐵 } } ⊆ 𝐸 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐶 = 𝐵 ) ) ) ) |
151 |
147 38 150
|
3imtr4d |
⊢ ( 𝑦 = 𝐵 → ( { { 𝑦 , 𝐴 } , { 𝑦 , 𝐵 } } ⊆ 𝐸 → ( { { 𝐶 , 𝐴 } , { 𝐶 , 𝐵 } } ⊆ 𝐸 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐶 = 𝑦 ) ) ) ) |
152 |
|
eqidd |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐶 = 𝐶 ) |
153 |
152
|
a1i |
⊢ ( { { 𝐶 , 𝐴 } , { 𝐶 , 𝐵 } } ⊆ 𝐸 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐶 = 𝐶 ) ) |
154 |
153
|
a1i13 |
⊢ ( 𝑦 = 𝐶 → ( { { 𝐶 , 𝐴 } , { 𝐶 , 𝐵 } } ⊆ 𝐸 → ( { { 𝐶 , 𝐴 } , { 𝐶 , 𝐵 } } ⊆ 𝐸 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐶 = 𝐶 ) ) ) ) |
155 |
|
eqeq2 |
⊢ ( 𝑦 = 𝐶 → ( 𝐶 = 𝑦 ↔ 𝐶 = 𝐶 ) ) |
156 |
155
|
imbi2d |
⊢ ( 𝑦 = 𝐶 → ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐶 = 𝑦 ) ↔ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐶 = 𝐶 ) ) ) |
157 |
156
|
imbi2d |
⊢ ( 𝑦 = 𝐶 → ( ( { { 𝐶 , 𝐴 } , { 𝐶 , 𝐵 } } ⊆ 𝐸 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐶 = 𝑦 ) ) ↔ ( { { 𝐶 , 𝐴 } , { 𝐶 , 𝐵 } } ⊆ 𝐸 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐶 = 𝐶 ) ) ) ) |
158 |
154 56 157
|
3imtr4d |
⊢ ( 𝑦 = 𝐶 → ( { { 𝑦 , 𝐴 } , { 𝑦 , 𝐵 } } ⊆ 𝐸 → ( { { 𝐶 , 𝐴 } , { 𝐶 , 𝐵 } } ⊆ 𝐸 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐶 = 𝑦 ) ) ) ) |
159 |
136 151 158
|
3jaoi |
⊢ ( ( 𝑦 = 𝐴 ∨ 𝑦 = 𝐵 ∨ 𝑦 = 𝐶 ) → ( { { 𝑦 , 𝐴 } , { 𝑦 , 𝐵 } } ⊆ 𝐸 → ( { { 𝐶 , 𝐴 } , { 𝐶 , 𝐵 } } ⊆ 𝐸 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐶 = 𝑦 ) ) ) ) |
160 |
|
preq1 |
⊢ ( 𝑥 = 𝐶 → { 𝑥 , 𝐴 } = { 𝐶 , 𝐴 } ) |
161 |
|
preq1 |
⊢ ( 𝑥 = 𝐶 → { 𝑥 , 𝐵 } = { 𝐶 , 𝐵 } ) |
162 |
160 161
|
preq12d |
⊢ ( 𝑥 = 𝐶 → { { 𝑥 , 𝐴 } , { 𝑥 , 𝐵 } } = { { 𝐶 , 𝐴 } , { 𝐶 , 𝐵 } } ) |
163 |
162
|
sseq1d |
⊢ ( 𝑥 = 𝐶 → ( { { 𝑥 , 𝐴 } , { 𝑥 , 𝐵 } } ⊆ 𝐸 ↔ { { 𝐶 , 𝐴 } , { 𝐶 , 𝐵 } } ⊆ 𝐸 ) ) |
164 |
|
eqeq1 |
⊢ ( 𝑥 = 𝐶 → ( 𝑥 = 𝑦 ↔ 𝐶 = 𝑦 ) ) |
165 |
164
|
imbi2d |
⊢ ( 𝑥 = 𝐶 → ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝑥 = 𝑦 ) ↔ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐶 = 𝑦 ) ) ) |
166 |
163 165
|
imbi12d |
⊢ ( 𝑥 = 𝐶 → ( ( { { 𝑥 , 𝐴 } , { 𝑥 , 𝐵 } } ⊆ 𝐸 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝑥 = 𝑦 ) ) ↔ ( { { 𝐶 , 𝐴 } , { 𝐶 , 𝐵 } } ⊆ 𝐸 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐶 = 𝑦 ) ) ) ) |
167 |
166
|
imbi2d |
⊢ ( 𝑥 = 𝐶 → ( ( { { 𝑦 , 𝐴 } , { 𝑦 , 𝐵 } } ⊆ 𝐸 → ( { { 𝑥 , 𝐴 } , { 𝑥 , 𝐵 } } ⊆ 𝐸 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝑥 = 𝑦 ) ) ) ↔ ( { { 𝑦 , 𝐴 } , { 𝑦 , 𝐵 } } ⊆ 𝐸 → ( { { 𝐶 , 𝐴 } , { 𝐶 , 𝐵 } } ⊆ 𝐸 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐶 = 𝑦 ) ) ) ) ) |
168 |
159 167
|
syl5ibr |
⊢ ( 𝑥 = 𝐶 → ( ( 𝑦 = 𝐴 ∨ 𝑦 = 𝐵 ∨ 𝑦 = 𝐶 ) → ( { { 𝑦 , 𝐴 } , { 𝑦 , 𝐵 } } ⊆ 𝐸 → ( { { 𝑥 , 𝐴 } , { 𝑥 , 𝐵 } } ⊆ 𝐸 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝑥 = 𝑦 ) ) ) ) ) |
169 |
70 122 168
|
3jaoi |
⊢ ( ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ∨ 𝑥 = 𝐶 ) → ( ( 𝑦 = 𝐴 ∨ 𝑦 = 𝐵 ∨ 𝑦 = 𝐶 ) → ( { { 𝑦 , 𝐴 } , { 𝑦 , 𝐵 } } ⊆ 𝐸 → ( { { 𝑥 , 𝐴 } , { 𝑥 , 𝐵 } } ⊆ 𝐸 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝑥 = 𝑦 ) ) ) ) ) |
170 |
169
|
com3l |
⊢ ( ( 𝑦 = 𝐴 ∨ 𝑦 = 𝐵 ∨ 𝑦 = 𝐶 ) → ( { { 𝑦 , 𝐴 } , { 𝑦 , 𝐵 } } ⊆ 𝐸 → ( ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ∨ 𝑥 = 𝐶 ) → ( { { 𝑥 , 𝐴 } , { 𝑥 , 𝐵 } } ⊆ 𝐸 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝑥 = 𝑦 ) ) ) ) ) |
171 |
6 170
|
sylbi |
⊢ ( 𝑦 ∈ { 𝐴 , 𝐵 , 𝐶 } → ( { { 𝑦 , 𝐴 } , { 𝑦 , 𝐵 } } ⊆ 𝐸 → ( ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ∨ 𝑥 = 𝐶 ) → ( { { 𝑥 , 𝐴 } , { 𝑥 , 𝐵 } } ⊆ 𝐸 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝑥 = 𝑦 ) ) ) ) ) |
172 |
171
|
imp |
⊢ ( ( 𝑦 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ { { 𝑦 , 𝐴 } , { 𝑦 , 𝐵 } } ⊆ 𝐸 ) → ( ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ∨ 𝑥 = 𝐶 ) → ( { { 𝑥 , 𝐴 } , { 𝑥 , 𝐵 } } ⊆ 𝐸 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝑥 = 𝑦 ) ) ) ) |
173 |
172
|
com3l |
⊢ ( ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ∨ 𝑥 = 𝐶 ) → ( { { 𝑥 , 𝐴 } , { 𝑥 , 𝐵 } } ⊆ 𝐸 → ( ( 𝑦 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ { { 𝑦 , 𝐴 } , { 𝑦 , 𝐵 } } ⊆ 𝐸 ) → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝑥 = 𝑦 ) ) ) ) |
174 |
4 173
|
sylbi |
⊢ ( 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } → ( { { 𝑥 , 𝐴 } , { 𝑥 , 𝐵 } } ⊆ 𝐸 → ( ( 𝑦 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ { { 𝑦 , 𝐴 } , { 𝑦 , 𝐵 } } ⊆ 𝐸 ) → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝑥 = 𝑦 ) ) ) ) |
175 |
174
|
imp31 |
⊢ ( ( ( 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ { { 𝑥 , 𝐴 } , { 𝑥 , 𝐵 } } ⊆ 𝐸 ) ∧ ( 𝑦 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ { { 𝑦 , 𝐴 } , { 𝑦 , 𝐵 } } ⊆ 𝐸 ) ) → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝑥 = 𝑦 ) ) |
176 |
175
|
com12 |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → ( ( ( 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ { { 𝑥 , 𝐴 } , { 𝑥 , 𝐵 } } ⊆ 𝐸 ) ∧ ( 𝑦 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ { { 𝑦 , 𝐴 } , { 𝑦 , 𝐵 } } ⊆ 𝐸 ) ) → 𝑥 = 𝑦 ) ) |
177 |
176
|
alrimivv |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → ∀ 𝑥 ∀ 𝑦 ( ( ( 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ { { 𝑥 , 𝐴 } , { 𝑥 , 𝐵 } } ⊆ 𝐸 ) ∧ ( 𝑦 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ { { 𝑦 , 𝐴 } , { 𝑦 , 𝐵 } } ⊆ 𝐸 ) ) → 𝑥 = 𝑦 ) ) |