Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
2 |
1
|
2pthfrgr |
⊢ ( 𝐺 ∈ FriendGraph → ∀ 𝑘 ∈ ( Vtx ‘ 𝐺 ) ∀ 𝑛 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑘 } ) ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( 𝑘 ( SPathsOn ‘ 𝐺 ) 𝑛 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ) ) |
3 |
|
spthonpthon |
⊢ ( 𝑓 ( 𝑘 ( SPathsOn ‘ 𝐺 ) 𝑛 ) 𝑝 → 𝑓 ( 𝑘 ( PathsOn ‘ 𝐺 ) 𝑛 ) 𝑝 ) |
4 |
3
|
adantr |
⊢ ( ( 𝑓 ( 𝑘 ( SPathsOn ‘ 𝐺 ) 𝑛 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ) → 𝑓 ( 𝑘 ( PathsOn ‘ 𝐺 ) 𝑛 ) 𝑝 ) |
5 |
4
|
2eximi |
⊢ ( ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( 𝑘 ( SPathsOn ‘ 𝐺 ) 𝑛 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ) → ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝑘 ( PathsOn ‘ 𝐺 ) 𝑛 ) 𝑝 ) |
6 |
5
|
2ralimi |
⊢ ( ∀ 𝑘 ∈ ( Vtx ‘ 𝐺 ) ∀ 𝑛 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑘 } ) ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( 𝑘 ( SPathsOn ‘ 𝐺 ) 𝑛 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ) → ∀ 𝑘 ∈ ( Vtx ‘ 𝐺 ) ∀ 𝑛 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑘 } ) ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝑘 ( PathsOn ‘ 𝐺 ) 𝑛 ) 𝑝 ) |
7 |
2 6
|
syl |
⊢ ( 𝐺 ∈ FriendGraph → ∀ 𝑘 ∈ ( Vtx ‘ 𝐺 ) ∀ 𝑛 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑘 } ) ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝑘 ( PathsOn ‘ 𝐺 ) 𝑛 ) 𝑝 ) |
8 |
1
|
isconngr1 |
⊢ ( 𝐺 ∈ FriendGraph → ( 𝐺 ∈ ConnGraph ↔ ∀ 𝑘 ∈ ( Vtx ‘ 𝐺 ) ∀ 𝑛 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑘 } ) ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝑘 ( PathsOn ‘ 𝐺 ) 𝑛 ) 𝑝 ) ) |
9 |
7 8
|
mpbird |
⊢ ( 𝐺 ∈ FriendGraph → 𝐺 ∈ ConnGraph ) |