Metamath Proof Explorer


Theorem frgrconngr

Description: A friendship graph is connected, see remark 1 in MertziosUnger p. 153 (after Proposition 1): "An arbitrary friendship graph has to be connected, ... ". (Contributed by Alexander van der Vekens, 6-Dec-2017) (Revised by AV, 1-Apr-2021)

Ref Expression
Assertion frgrconngr ( 𝐺 ∈ FriendGraph → 𝐺 ∈ ConnGraph )

Proof

Step Hyp Ref Expression
1 eqid ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 )
2 1 2pthfrgr ( 𝐺 ∈ FriendGraph → ∀ 𝑘 ∈ ( Vtx ‘ 𝐺 ) ∀ 𝑛 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑘 } ) ∃ 𝑓𝑝 ( 𝑓 ( 𝑘 ( SPathsOn ‘ 𝐺 ) 𝑛 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ) )
3 spthonpthon ( 𝑓 ( 𝑘 ( SPathsOn ‘ 𝐺 ) 𝑛 ) 𝑝𝑓 ( 𝑘 ( PathsOn ‘ 𝐺 ) 𝑛 ) 𝑝 )
4 3 adantr ( ( 𝑓 ( 𝑘 ( SPathsOn ‘ 𝐺 ) 𝑛 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ) → 𝑓 ( 𝑘 ( PathsOn ‘ 𝐺 ) 𝑛 ) 𝑝 )
5 4 2eximi ( ∃ 𝑓𝑝 ( 𝑓 ( 𝑘 ( SPathsOn ‘ 𝐺 ) 𝑛 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ) → ∃ 𝑓𝑝 𝑓 ( 𝑘 ( PathsOn ‘ 𝐺 ) 𝑛 ) 𝑝 )
6 5 2ralimi ( ∀ 𝑘 ∈ ( Vtx ‘ 𝐺 ) ∀ 𝑛 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑘 } ) ∃ 𝑓𝑝 ( 𝑓 ( 𝑘 ( SPathsOn ‘ 𝐺 ) 𝑛 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ) → ∀ 𝑘 ∈ ( Vtx ‘ 𝐺 ) ∀ 𝑛 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑘 } ) ∃ 𝑓𝑝 𝑓 ( 𝑘 ( PathsOn ‘ 𝐺 ) 𝑛 ) 𝑝 )
7 2 6 syl ( 𝐺 ∈ FriendGraph → ∀ 𝑘 ∈ ( Vtx ‘ 𝐺 ) ∀ 𝑛 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑘 } ) ∃ 𝑓𝑝 𝑓 ( 𝑘 ( PathsOn ‘ 𝐺 ) 𝑛 ) 𝑝 )
8 1 isconngr1 ( 𝐺 ∈ FriendGraph → ( 𝐺 ∈ ConnGraph ↔ ∀ 𝑘 ∈ ( Vtx ‘ 𝐺 ) ∀ 𝑛 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑘 } ) ∃ 𝑓𝑝 𝑓 ( 𝑘 ( PathsOn ‘ 𝐺 ) 𝑛 ) 𝑝 ) )
9 7 8 mpbird ( 𝐺 ∈ FriendGraph → 𝐺 ∈ ConnGraph )