| Step | Hyp | Ref | Expression | 
						
							| 1 |  | frcond1.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | frcond1.e | ⊢ 𝐸  =  ( Edg ‘ 𝐺 ) | 
						
							| 3 | 1 2 | frcond2 | ⊢ ( 𝐺  ∈   FriendGraph   →  ( ( 𝐴  ∈  𝑉  ∧  𝐶  ∈  𝑉  ∧  𝐴  ≠  𝐶 )  →  ∃! 𝑏  ∈  𝑉 ( { 𝐴 ,  𝑏 }  ∈  𝐸  ∧  { 𝑏 ,  𝐶 }  ∈  𝐸 ) ) ) | 
						
							| 4 | 3 | imp | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  ( 𝐴  ∈  𝑉  ∧  𝐶  ∈  𝑉  ∧  𝐴  ≠  𝐶 ) )  →  ∃! 𝑏  ∈  𝑉 ( { 𝐴 ,  𝑏 }  ∈  𝐸  ∧  { 𝑏 ,  𝐶 }  ∈  𝐸 ) ) | 
						
							| 5 |  | frgrusgr | ⊢ ( 𝐺  ∈   FriendGraph   →  𝐺  ∈  USGraph ) | 
						
							| 6 | 5 | adantr | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  ( 𝐴  ∈  𝑉  ∧  𝐶  ∈  𝑉  ∧  𝐴  ≠  𝐶 ) )  →  𝐺  ∈  USGraph ) | 
						
							| 7 |  | simpl | ⊢ ( ( { 𝐴 ,  𝑏 }  ∈  𝐸  ∧  { 𝑏 ,  𝐶 }  ∈  𝐸 )  →  { 𝐴 ,  𝑏 }  ∈  𝐸 ) | 
						
							| 8 | 2 1 | usgrpredgv | ⊢ ( ( 𝐺  ∈  USGraph  ∧  { 𝐴 ,  𝑏 }  ∈  𝐸 )  →  ( 𝐴  ∈  𝑉  ∧  𝑏  ∈  𝑉 ) ) | 
						
							| 9 | 8 | simprd | ⊢ ( ( 𝐺  ∈  USGraph  ∧  { 𝐴 ,  𝑏 }  ∈  𝐸 )  →  𝑏  ∈  𝑉 ) | 
						
							| 10 | 6 7 9 | syl2an | ⊢ ( ( ( 𝐺  ∈   FriendGraph   ∧  ( 𝐴  ∈  𝑉  ∧  𝐶  ∈  𝑉  ∧  𝐴  ≠  𝐶 ) )  ∧  ( { 𝐴 ,  𝑏 }  ∈  𝐸  ∧  { 𝑏 ,  𝐶 }  ∈  𝐸 ) )  →  𝑏  ∈  𝑉 ) | 
						
							| 11 | 10 | reueubd | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  ( 𝐴  ∈  𝑉  ∧  𝐶  ∈  𝑉  ∧  𝐴  ≠  𝐶 ) )  →  ( ∃! 𝑏  ∈  𝑉 ( { 𝐴 ,  𝑏 }  ∈  𝐸  ∧  { 𝑏 ,  𝐶 }  ∈  𝐸 )  ↔  ∃! 𝑏 ( { 𝐴 ,  𝑏 }  ∈  𝐸  ∧  { 𝑏 ,  𝐶 }  ∈  𝐸 ) ) ) | 
						
							| 12 | 4 11 | mpbid | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  ( 𝐴  ∈  𝑉  ∧  𝐶  ∈  𝑉  ∧  𝐴  ≠  𝐶 ) )  →  ∃! 𝑏 ( { 𝐴 ,  𝑏 }  ∈  𝐸  ∧  { 𝑏 ,  𝐶 }  ∈  𝐸 ) ) | 
						
							| 13 | 12 | ex | ⊢ ( 𝐺  ∈   FriendGraph   →  ( ( 𝐴  ∈  𝑉  ∧  𝐶  ∈  𝑉  ∧  𝐴  ≠  𝐶 )  →  ∃! 𝑏 ( { 𝐴 ,  𝑏 }  ∈  𝐸  ∧  { 𝑏 ,  𝐶 }  ∈  𝐸 ) ) ) |