Step |
Hyp |
Ref |
Expression |
1 |
|
frcond1.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
frcond1.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
3 |
1 2
|
frcond2 |
⊢ ( 𝐺 ∈ FriendGraph → ( ( 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐴 ≠ 𝐶 ) → ∃! 𝑏 ∈ 𝑉 ( { 𝐴 , 𝑏 } ∈ 𝐸 ∧ { 𝑏 , 𝐶 } ∈ 𝐸 ) ) ) |
4 |
3
|
imp |
⊢ ( ( 𝐺 ∈ FriendGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐴 ≠ 𝐶 ) ) → ∃! 𝑏 ∈ 𝑉 ( { 𝐴 , 𝑏 } ∈ 𝐸 ∧ { 𝑏 , 𝐶 } ∈ 𝐸 ) ) |
5 |
|
frgrusgr |
⊢ ( 𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph ) |
6 |
5
|
adantr |
⊢ ( ( 𝐺 ∈ FriendGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐴 ≠ 𝐶 ) ) → 𝐺 ∈ USGraph ) |
7 |
|
simpl |
⊢ ( ( { 𝐴 , 𝑏 } ∈ 𝐸 ∧ { 𝑏 , 𝐶 } ∈ 𝐸 ) → { 𝐴 , 𝑏 } ∈ 𝐸 ) |
8 |
2 1
|
usgrpredgv |
⊢ ( ( 𝐺 ∈ USGraph ∧ { 𝐴 , 𝑏 } ∈ 𝐸 ) → ( 𝐴 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) |
9 |
8
|
simprd |
⊢ ( ( 𝐺 ∈ USGraph ∧ { 𝐴 , 𝑏 } ∈ 𝐸 ) → 𝑏 ∈ 𝑉 ) |
10 |
6 7 9
|
syl2an |
⊢ ( ( ( 𝐺 ∈ FriendGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐴 ≠ 𝐶 ) ) ∧ ( { 𝐴 , 𝑏 } ∈ 𝐸 ∧ { 𝑏 , 𝐶 } ∈ 𝐸 ) ) → 𝑏 ∈ 𝑉 ) |
11 |
10
|
reueubd |
⊢ ( ( 𝐺 ∈ FriendGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐴 ≠ 𝐶 ) ) → ( ∃! 𝑏 ∈ 𝑉 ( { 𝐴 , 𝑏 } ∈ 𝐸 ∧ { 𝑏 , 𝐶 } ∈ 𝐸 ) ↔ ∃! 𝑏 ( { 𝐴 , 𝑏 } ∈ 𝐸 ∧ { 𝑏 , 𝐶 } ∈ 𝐸 ) ) ) |
12 |
4 11
|
mpbid |
⊢ ( ( 𝐺 ∈ FriendGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐴 ≠ 𝐶 ) ) → ∃! 𝑏 ( { 𝐴 , 𝑏 } ∈ 𝐸 ∧ { 𝑏 , 𝐶 } ∈ 𝐸 ) ) |
13 |
12
|
ex |
⊢ ( 𝐺 ∈ FriendGraph → ( ( 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐴 ≠ 𝐶 ) → ∃! 𝑏 ( { 𝐴 , 𝑏 } ∈ 𝐸 ∧ { 𝑏 , 𝐶 } ∈ 𝐸 ) ) ) |