Step |
Hyp |
Ref |
Expression |
1 |
|
frgrhash2wsp.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
2nn |
⊢ 2 ∈ ℕ |
3 |
1
|
wspniunwspnon |
⊢ ( ( 2 ∈ ℕ ∧ 𝐺 ∈ FriendGraph ) → ( 2 WSPathsN 𝐺 ) = ∪ 𝑎 ∈ 𝑉 ∪ 𝑏 ∈ ( 𝑉 ∖ { 𝑎 } ) ( 𝑎 ( 2 WSPathsNOn 𝐺 ) 𝑏 ) ) |
4 |
2 3
|
mpan |
⊢ ( 𝐺 ∈ FriendGraph → ( 2 WSPathsN 𝐺 ) = ∪ 𝑎 ∈ 𝑉 ∪ 𝑏 ∈ ( 𝑉 ∖ { 𝑎 } ) ( 𝑎 ( 2 WSPathsNOn 𝐺 ) 𝑏 ) ) |
5 |
4
|
fveq2d |
⊢ ( 𝐺 ∈ FriendGraph → ( ♯ ‘ ( 2 WSPathsN 𝐺 ) ) = ( ♯ ‘ ∪ 𝑎 ∈ 𝑉 ∪ 𝑏 ∈ ( 𝑉 ∖ { 𝑎 } ) ( 𝑎 ( 2 WSPathsNOn 𝐺 ) 𝑏 ) ) ) |
6 |
5
|
adantr |
⊢ ( ( 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ) → ( ♯ ‘ ( 2 WSPathsN 𝐺 ) ) = ( ♯ ‘ ∪ 𝑎 ∈ 𝑉 ∪ 𝑏 ∈ ( 𝑉 ∖ { 𝑎 } ) ( 𝑎 ( 2 WSPathsNOn 𝐺 ) 𝑏 ) ) ) |
7 |
|
simpr |
⊢ ( ( 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ) → 𝑉 ∈ Fin ) |
8 |
|
eqid |
⊢ ( 𝑉 ∖ { 𝑎 } ) = ( 𝑉 ∖ { 𝑎 } ) |
9 |
1
|
eleq1i |
⊢ ( 𝑉 ∈ Fin ↔ ( Vtx ‘ 𝐺 ) ∈ Fin ) |
10 |
|
wspthnonfi |
⊢ ( ( Vtx ‘ 𝐺 ) ∈ Fin → ( 𝑎 ( 2 WSPathsNOn 𝐺 ) 𝑏 ) ∈ Fin ) |
11 |
9 10
|
sylbi |
⊢ ( 𝑉 ∈ Fin → ( 𝑎 ( 2 WSPathsNOn 𝐺 ) 𝑏 ) ∈ Fin ) |
12 |
11
|
adantl |
⊢ ( ( 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ) → ( 𝑎 ( 2 WSPathsNOn 𝐺 ) 𝑏 ) ∈ Fin ) |
13 |
12
|
3ad2ant1 |
⊢ ( ( ( 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ) ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ ( 𝑉 ∖ { 𝑎 } ) ) → ( 𝑎 ( 2 WSPathsNOn 𝐺 ) 𝑏 ) ∈ Fin ) |
14 |
|
2wspiundisj |
⊢ Disj 𝑎 ∈ 𝑉 ∪ 𝑏 ∈ ( 𝑉 ∖ { 𝑎 } ) ( 𝑎 ( 2 WSPathsNOn 𝐺 ) 𝑏 ) |
15 |
14
|
a1i |
⊢ ( ( 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ) → Disj 𝑎 ∈ 𝑉 ∪ 𝑏 ∈ ( 𝑉 ∖ { 𝑎 } ) ( 𝑎 ( 2 WSPathsNOn 𝐺 ) 𝑏 ) ) |
16 |
|
2wspdisj |
⊢ Disj 𝑏 ∈ ( 𝑉 ∖ { 𝑎 } ) ( 𝑎 ( 2 WSPathsNOn 𝐺 ) 𝑏 ) |
17 |
16
|
a1i |
⊢ ( ( ( 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ) ∧ 𝑎 ∈ 𝑉 ) → Disj 𝑏 ∈ ( 𝑉 ∖ { 𝑎 } ) ( 𝑎 ( 2 WSPathsNOn 𝐺 ) 𝑏 ) ) |
18 |
|
simplll |
⊢ ( ( ( ( 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ) ∧ 𝑎 ∈ 𝑉 ) ∧ 𝑏 ∈ ( 𝑉 ∖ { 𝑎 } ) ) → 𝐺 ∈ FriendGraph ) |
19 |
|
simpr |
⊢ ( ( ( 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ) ∧ 𝑎 ∈ 𝑉 ) → 𝑎 ∈ 𝑉 ) |
20 |
|
eldifi |
⊢ ( 𝑏 ∈ ( 𝑉 ∖ { 𝑎 } ) → 𝑏 ∈ 𝑉 ) |
21 |
19 20
|
anim12i |
⊢ ( ( ( ( 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ) ∧ 𝑎 ∈ 𝑉 ) ∧ 𝑏 ∈ ( 𝑉 ∖ { 𝑎 } ) ) → ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) |
22 |
|
eldifsni |
⊢ ( 𝑏 ∈ ( 𝑉 ∖ { 𝑎 } ) → 𝑏 ≠ 𝑎 ) |
23 |
22
|
necomd |
⊢ ( 𝑏 ∈ ( 𝑉 ∖ { 𝑎 } ) → 𝑎 ≠ 𝑏 ) |
24 |
23
|
adantl |
⊢ ( ( ( ( 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ) ∧ 𝑎 ∈ 𝑉 ) ∧ 𝑏 ∈ ( 𝑉 ∖ { 𝑎 } ) ) → 𝑎 ≠ 𝑏 ) |
25 |
1
|
frgr2wsp1 |
⊢ ( ( 𝐺 ∈ FriendGraph ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ 𝑎 ≠ 𝑏 ) → ( ♯ ‘ ( 𝑎 ( 2 WSPathsNOn 𝐺 ) 𝑏 ) ) = 1 ) |
26 |
18 21 24 25
|
syl3anc |
⊢ ( ( ( ( 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ) ∧ 𝑎 ∈ 𝑉 ) ∧ 𝑏 ∈ ( 𝑉 ∖ { 𝑎 } ) ) → ( ♯ ‘ ( 𝑎 ( 2 WSPathsNOn 𝐺 ) 𝑏 ) ) = 1 ) |
27 |
26
|
3impa |
⊢ ( ( ( 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ) ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ ( 𝑉 ∖ { 𝑎 } ) ) → ( ♯ ‘ ( 𝑎 ( 2 WSPathsNOn 𝐺 ) 𝑏 ) ) = 1 ) |
28 |
7 8 13 15 17 27
|
hash2iun1dif1 |
⊢ ( ( 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ) → ( ♯ ‘ ∪ 𝑎 ∈ 𝑉 ∪ 𝑏 ∈ ( 𝑉 ∖ { 𝑎 } ) ( 𝑎 ( 2 WSPathsNOn 𝐺 ) 𝑏 ) ) = ( ( ♯ ‘ 𝑉 ) · ( ( ♯ ‘ 𝑉 ) − 1 ) ) ) |
29 |
6 28
|
eqtrd |
⊢ ( ( 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ) → ( ♯ ‘ ( 2 WSPathsN 𝐺 ) ) = ( ( ♯ ‘ 𝑉 ) · ( ( ♯ ‘ 𝑉 ) − 1 ) ) ) |