| Step | Hyp | Ref | Expression | 
						
							| 1 |  | frgrnbnb.e | ⊢ 𝐸  =  ( Edg ‘ 𝐺 ) | 
						
							| 2 |  | frgrnbnb.n | ⊢ 𝐷  =  ( 𝐺  NeighbVtx  𝑋 ) | 
						
							| 3 |  | frgrusgr | ⊢ ( 𝐺  ∈   FriendGraph   →  𝐺  ∈  USGraph ) | 
						
							| 4 | 2 | eleq2i | ⊢ ( 𝑈  ∈  𝐷  ↔  𝑈  ∈  ( 𝐺  NeighbVtx  𝑋 ) ) | 
						
							| 5 | 1 | nbusgreledg | ⊢ ( 𝐺  ∈  USGraph  →  ( 𝑈  ∈  ( 𝐺  NeighbVtx  𝑋 )  ↔  { 𝑈 ,  𝑋 }  ∈  𝐸 ) ) | 
						
							| 6 | 5 | biimpd | ⊢ ( 𝐺  ∈  USGraph  →  ( 𝑈  ∈  ( 𝐺  NeighbVtx  𝑋 )  →  { 𝑈 ,  𝑋 }  ∈  𝐸 ) ) | 
						
							| 7 | 4 6 | biimtrid | ⊢ ( 𝐺  ∈  USGraph  →  ( 𝑈  ∈  𝐷  →  { 𝑈 ,  𝑋 }  ∈  𝐸 ) ) | 
						
							| 8 | 2 | eleq2i | ⊢ ( 𝑊  ∈  𝐷  ↔  𝑊  ∈  ( 𝐺  NeighbVtx  𝑋 ) ) | 
						
							| 9 | 1 | nbusgreledg | ⊢ ( 𝐺  ∈  USGraph  →  ( 𝑊  ∈  ( 𝐺  NeighbVtx  𝑋 )  ↔  { 𝑊 ,  𝑋 }  ∈  𝐸 ) ) | 
						
							| 10 | 9 | biimpd | ⊢ ( 𝐺  ∈  USGraph  →  ( 𝑊  ∈  ( 𝐺  NeighbVtx  𝑋 )  →  { 𝑊 ,  𝑋 }  ∈  𝐸 ) ) | 
						
							| 11 | 8 10 | biimtrid | ⊢ ( 𝐺  ∈  USGraph  →  ( 𝑊  ∈  𝐷  →  { 𝑊 ,  𝑋 }  ∈  𝐸 ) ) | 
						
							| 12 | 7 11 | anim12d | ⊢ ( 𝐺  ∈  USGraph  →  ( ( 𝑈  ∈  𝐷  ∧  𝑊  ∈  𝐷 )  →  ( { 𝑈 ,  𝑋 }  ∈  𝐸  ∧  { 𝑊 ,  𝑋 }  ∈  𝐸 ) ) ) | 
						
							| 13 | 12 | imp | ⊢ ( ( 𝐺  ∈  USGraph  ∧  ( 𝑈  ∈  𝐷  ∧  𝑊  ∈  𝐷 ) )  →  ( { 𝑈 ,  𝑋 }  ∈  𝐸  ∧  { 𝑊 ,  𝑋 }  ∈  𝐸 ) ) | 
						
							| 14 |  | eqid | ⊢ ( Vtx ‘ 𝐺 )  =  ( Vtx ‘ 𝐺 ) | 
						
							| 15 | 14 | nbgrisvtx | ⊢ ( 𝑈  ∈  ( 𝐺  NeighbVtx  𝑋 )  →  𝑈  ∈  ( Vtx ‘ 𝐺 ) ) | 
						
							| 16 | 15 2 | eleq2s | ⊢ ( 𝑈  ∈  𝐷  →  𝑈  ∈  ( Vtx ‘ 𝐺 ) ) | 
						
							| 17 | 14 | nbgrisvtx | ⊢ ( 𝑊  ∈  ( 𝐺  NeighbVtx  𝑋 )  →  𝑊  ∈  ( Vtx ‘ 𝐺 ) ) | 
						
							| 18 | 17 2 | eleq2s | ⊢ ( 𝑊  ∈  𝐷  →  𝑊  ∈  ( Vtx ‘ 𝐺 ) ) | 
						
							| 19 | 16 18 | anim12i | ⊢ ( ( 𝑈  ∈  𝐷  ∧  𝑊  ∈  𝐷 )  →  ( 𝑈  ∈  ( Vtx ‘ 𝐺 )  ∧  𝑊  ∈  ( Vtx ‘ 𝐺 ) ) ) | 
						
							| 20 | 19 | adantl | ⊢ ( ( 𝐺  ∈  USGraph  ∧  ( 𝑈  ∈  𝐷  ∧  𝑊  ∈  𝐷 ) )  →  ( 𝑈  ∈  ( Vtx ‘ 𝐺 )  ∧  𝑊  ∈  ( Vtx ‘ 𝐺 ) ) ) | 
						
							| 21 | 1 14 | usgrpredgv | ⊢ ( ( 𝐺  ∈  USGraph  ∧  { 𝑈 ,  𝐴 }  ∈  𝐸 )  →  ( 𝑈  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐴  ∈  ( Vtx ‘ 𝐺 ) ) ) | 
						
							| 22 | 21 | ad2ant2r | ⊢ ( ( ( 𝐺  ∈  USGraph  ∧  ( 𝑈  ∈  𝐷  ∧  𝑊  ∈  𝐷 ) )  ∧  ( { 𝑈 ,  𝐴 }  ∈  𝐸  ∧  { 𝑊 ,  𝐴 }  ∈  𝐸 ) )  →  ( 𝑈  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐴  ∈  ( Vtx ‘ 𝐺 ) ) ) | 
						
							| 23 |  | ax-1 | ⊢ ( 𝐴  =  𝑋  →  ( 𝐺  ∈   FriendGraph   →  𝐴  =  𝑋 ) ) | 
						
							| 24 | 23 | 2a1d | ⊢ ( 𝐴  =  𝑋  →  ( ( { 𝑈 ,  𝐴 }  ∈  𝐸  ∧  { 𝑊 ,  𝐴 }  ∈  𝐸 )  →  ( ( ( 𝑋  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐴  ∈  ( Vtx ‘ 𝐺 ) )  ∧  ( 𝑈  ∈  ( Vtx ‘ 𝐺 )  ∧  𝑊  ∈  ( Vtx ‘ 𝐺 ) ) )  →  ( 𝐺  ∈   FriendGraph   →  𝐴  =  𝑋 ) ) ) ) | 
						
							| 25 | 24 | 2a1d | ⊢ ( 𝐴  =  𝑋  →  ( 𝑈  ≠  𝑊  →  ( ( { 𝑈 ,  𝑋 }  ∈  𝐸  ∧  { 𝑊 ,  𝑋 }  ∈  𝐸 )  →  ( ( { 𝑈 ,  𝐴 }  ∈  𝐸  ∧  { 𝑊 ,  𝐴 }  ∈  𝐸 )  →  ( ( ( 𝑋  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐴  ∈  ( Vtx ‘ 𝐺 ) )  ∧  ( 𝑈  ∈  ( Vtx ‘ 𝐺 )  ∧  𝑊  ∈  ( Vtx ‘ 𝐺 ) ) )  →  ( 𝐺  ∈   FriendGraph   →  𝐴  =  𝑋 ) ) ) ) ) ) | 
						
							| 26 |  | simpll | ⊢ ( ( ( 𝐺  ∈  USGraph  ∧  ( ( 𝑋  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐴  ∈  ( Vtx ‘ 𝐺 ) )  ∧  ( 𝑈  ∈  ( Vtx ‘ 𝐺 )  ∧  𝑊  ∈  ( Vtx ‘ 𝐺 ) ) ) )  ∧  ( 𝐴  ≠  𝑋  ∧  𝑈  ≠  𝑊 ) )  →  𝐺  ∈  USGraph ) | 
						
							| 27 |  | simprrr | ⊢ ( ( 𝐺  ∈  USGraph  ∧  ( ( 𝑋  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐴  ∈  ( Vtx ‘ 𝐺 ) )  ∧  ( 𝑈  ∈  ( Vtx ‘ 𝐺 )  ∧  𝑊  ∈  ( Vtx ‘ 𝐺 ) ) ) )  →  𝑊  ∈  ( Vtx ‘ 𝐺 ) ) | 
						
							| 28 | 27 | adantr | ⊢ ( ( ( 𝐺  ∈  USGraph  ∧  ( ( 𝑋  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐴  ∈  ( Vtx ‘ 𝐺 ) )  ∧  ( 𝑈  ∈  ( Vtx ‘ 𝐺 )  ∧  𝑊  ∈  ( Vtx ‘ 𝐺 ) ) ) )  ∧  ( 𝐴  ≠  𝑋  ∧  𝑈  ≠  𝑊 ) )  →  𝑊  ∈  ( Vtx ‘ 𝐺 ) ) | 
						
							| 29 |  | simprrl | ⊢ ( ( 𝐺  ∈  USGraph  ∧  ( ( 𝑋  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐴  ∈  ( Vtx ‘ 𝐺 ) )  ∧  ( 𝑈  ∈  ( Vtx ‘ 𝐺 )  ∧  𝑊  ∈  ( Vtx ‘ 𝐺 ) ) ) )  →  𝑈  ∈  ( Vtx ‘ 𝐺 ) ) | 
						
							| 30 | 29 | adantr | ⊢ ( ( ( 𝐺  ∈  USGraph  ∧  ( ( 𝑋  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐴  ∈  ( Vtx ‘ 𝐺 ) )  ∧  ( 𝑈  ∈  ( Vtx ‘ 𝐺 )  ∧  𝑊  ∈  ( Vtx ‘ 𝐺 ) ) ) )  ∧  ( 𝐴  ≠  𝑋  ∧  𝑈  ≠  𝑊 ) )  →  𝑈  ∈  ( Vtx ‘ 𝐺 ) ) | 
						
							| 31 |  | necom | ⊢ ( 𝑈  ≠  𝑊  ↔  𝑊  ≠  𝑈 ) | 
						
							| 32 | 31 | biimpi | ⊢ ( 𝑈  ≠  𝑊  →  𝑊  ≠  𝑈 ) | 
						
							| 33 | 32 | adantl | ⊢ ( ( 𝐴  ≠  𝑋  ∧  𝑈  ≠  𝑊 )  →  𝑊  ≠  𝑈 ) | 
						
							| 34 | 33 | adantl | ⊢ ( ( ( 𝐺  ∈  USGraph  ∧  ( ( 𝑋  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐴  ∈  ( Vtx ‘ 𝐺 ) )  ∧  ( 𝑈  ∈  ( Vtx ‘ 𝐺 )  ∧  𝑊  ∈  ( Vtx ‘ 𝐺 ) ) ) )  ∧  ( 𝐴  ≠  𝑋  ∧  𝑈  ≠  𝑊 ) )  →  𝑊  ≠  𝑈 ) | 
						
							| 35 | 28 30 34 | 3jca | ⊢ ( ( ( 𝐺  ∈  USGraph  ∧  ( ( 𝑋  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐴  ∈  ( Vtx ‘ 𝐺 ) )  ∧  ( 𝑈  ∈  ( Vtx ‘ 𝐺 )  ∧  𝑊  ∈  ( Vtx ‘ 𝐺 ) ) ) )  ∧  ( 𝐴  ≠  𝑋  ∧  𝑈  ≠  𝑊 ) )  →  ( 𝑊  ∈  ( Vtx ‘ 𝐺 )  ∧  𝑈  ∈  ( Vtx ‘ 𝐺 )  ∧  𝑊  ≠  𝑈 ) ) | 
						
							| 36 |  | simprll | ⊢ ( ( 𝐺  ∈  USGraph  ∧  ( ( 𝑋  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐴  ∈  ( Vtx ‘ 𝐺 ) )  ∧  ( 𝑈  ∈  ( Vtx ‘ 𝐺 )  ∧  𝑊  ∈  ( Vtx ‘ 𝐺 ) ) ) )  →  𝑋  ∈  ( Vtx ‘ 𝐺 ) ) | 
						
							| 37 | 36 | adantr | ⊢ ( ( ( 𝐺  ∈  USGraph  ∧  ( ( 𝑋  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐴  ∈  ( Vtx ‘ 𝐺 ) )  ∧  ( 𝑈  ∈  ( Vtx ‘ 𝐺 )  ∧  𝑊  ∈  ( Vtx ‘ 𝐺 ) ) ) )  ∧  ( 𝐴  ≠  𝑋  ∧  𝑈  ≠  𝑊 ) )  →  𝑋  ∈  ( Vtx ‘ 𝐺 ) ) | 
						
							| 38 |  | simprlr | ⊢ ( ( 𝐺  ∈  USGraph  ∧  ( ( 𝑋  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐴  ∈  ( Vtx ‘ 𝐺 ) )  ∧  ( 𝑈  ∈  ( Vtx ‘ 𝐺 )  ∧  𝑊  ∈  ( Vtx ‘ 𝐺 ) ) ) )  →  𝐴  ∈  ( Vtx ‘ 𝐺 ) ) | 
						
							| 39 | 38 | adantr | ⊢ ( ( ( 𝐺  ∈  USGraph  ∧  ( ( 𝑋  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐴  ∈  ( Vtx ‘ 𝐺 ) )  ∧  ( 𝑈  ∈  ( Vtx ‘ 𝐺 )  ∧  𝑊  ∈  ( Vtx ‘ 𝐺 ) ) ) )  ∧  ( 𝐴  ≠  𝑋  ∧  𝑈  ≠  𝑊 ) )  →  𝐴  ∈  ( Vtx ‘ 𝐺 ) ) | 
						
							| 40 |  | necom | ⊢ ( 𝐴  ≠  𝑋  ↔  𝑋  ≠  𝐴 ) | 
						
							| 41 | 40 | biimpi | ⊢ ( 𝐴  ≠  𝑋  →  𝑋  ≠  𝐴 ) | 
						
							| 42 | 41 | adantr | ⊢ ( ( 𝐴  ≠  𝑋  ∧  𝑈  ≠  𝑊 )  →  𝑋  ≠  𝐴 ) | 
						
							| 43 | 42 | adantl | ⊢ ( ( ( 𝐺  ∈  USGraph  ∧  ( ( 𝑋  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐴  ∈  ( Vtx ‘ 𝐺 ) )  ∧  ( 𝑈  ∈  ( Vtx ‘ 𝐺 )  ∧  𝑊  ∈  ( Vtx ‘ 𝐺 ) ) ) )  ∧  ( 𝐴  ≠  𝑋  ∧  𝑈  ≠  𝑊 ) )  →  𝑋  ≠  𝐴 ) | 
						
							| 44 | 37 39 43 | 3jca | ⊢ ( ( ( 𝐺  ∈  USGraph  ∧  ( ( 𝑋  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐴  ∈  ( Vtx ‘ 𝐺 ) )  ∧  ( 𝑈  ∈  ( Vtx ‘ 𝐺 )  ∧  𝑊  ∈  ( Vtx ‘ 𝐺 ) ) ) )  ∧  ( 𝐴  ≠  𝑋  ∧  𝑈  ≠  𝑊 ) )  →  ( 𝑋  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐴  ∈  ( Vtx ‘ 𝐺 )  ∧  𝑋  ≠  𝐴 ) ) | 
						
							| 45 | 26 35 44 | 3jca | ⊢ ( ( ( 𝐺  ∈  USGraph  ∧  ( ( 𝑋  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐴  ∈  ( Vtx ‘ 𝐺 ) )  ∧  ( 𝑈  ∈  ( Vtx ‘ 𝐺 )  ∧  𝑊  ∈  ( Vtx ‘ 𝐺 ) ) ) )  ∧  ( 𝐴  ≠  𝑋  ∧  𝑈  ≠  𝑊 ) )  →  ( 𝐺  ∈  USGraph  ∧  ( 𝑊  ∈  ( Vtx ‘ 𝐺 )  ∧  𝑈  ∈  ( Vtx ‘ 𝐺 )  ∧  𝑊  ≠  𝑈 )  ∧  ( 𝑋  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐴  ∈  ( Vtx ‘ 𝐺 )  ∧  𝑋  ≠  𝐴 ) ) ) | 
						
							| 46 | 45 | ad4ant14 | ⊢ ( ( ( ( ( 𝐺  ∈  USGraph  ∧  ( ( 𝑋  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐴  ∈  ( Vtx ‘ 𝐺 ) )  ∧  ( 𝑈  ∈  ( Vtx ‘ 𝐺 )  ∧  𝑊  ∈  ( Vtx ‘ 𝐺 ) ) ) )  ∧  ( { 𝑈 ,  𝑋 }  ∈  𝐸  ∧  { 𝑊 ,  𝑋 }  ∈  𝐸 ) )  ∧  ( { 𝑈 ,  𝐴 }  ∈  𝐸  ∧  { 𝑊 ,  𝐴 }  ∈  𝐸 ) )  ∧  ( 𝐴  ≠  𝑋  ∧  𝑈  ≠  𝑊 ) )  →  ( 𝐺  ∈  USGraph  ∧  ( 𝑊  ∈  ( Vtx ‘ 𝐺 )  ∧  𝑈  ∈  ( Vtx ‘ 𝐺 )  ∧  𝑊  ≠  𝑈 )  ∧  ( 𝑋  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐴  ∈  ( Vtx ‘ 𝐺 )  ∧  𝑋  ≠  𝐴 ) ) ) | 
						
							| 47 |  | prcom | ⊢ { 𝑈 ,  𝑋 }  =  { 𝑋 ,  𝑈 } | 
						
							| 48 | 47 | eleq1i | ⊢ ( { 𝑈 ,  𝑋 }  ∈  𝐸  ↔  { 𝑋 ,  𝑈 }  ∈  𝐸 ) | 
						
							| 49 | 48 | biimpi | ⊢ ( { 𝑈 ,  𝑋 }  ∈  𝐸  →  { 𝑋 ,  𝑈 }  ∈  𝐸 ) | 
						
							| 50 | 49 | anim1ci | ⊢ ( ( { 𝑈 ,  𝑋 }  ∈  𝐸  ∧  { 𝑊 ,  𝑋 }  ∈  𝐸 )  →  ( { 𝑊 ,  𝑋 }  ∈  𝐸  ∧  { 𝑋 ,  𝑈 }  ∈  𝐸 ) ) | 
						
							| 51 | 50 | adantl | ⊢ ( ( ( 𝐺  ∈  USGraph  ∧  ( ( 𝑋  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐴  ∈  ( Vtx ‘ 𝐺 ) )  ∧  ( 𝑈  ∈  ( Vtx ‘ 𝐺 )  ∧  𝑊  ∈  ( Vtx ‘ 𝐺 ) ) ) )  ∧  ( { 𝑈 ,  𝑋 }  ∈  𝐸  ∧  { 𝑊 ,  𝑋 }  ∈  𝐸 ) )  →  ( { 𝑊 ,  𝑋 }  ∈  𝐸  ∧  { 𝑋 ,  𝑈 }  ∈  𝐸 ) ) | 
						
							| 52 |  | prcom | ⊢ { 𝑊 ,  𝐴 }  =  { 𝐴 ,  𝑊 } | 
						
							| 53 | 52 | eleq1i | ⊢ ( { 𝑊 ,  𝐴 }  ∈  𝐸  ↔  { 𝐴 ,  𝑊 }  ∈  𝐸 ) | 
						
							| 54 | 53 | biimpi | ⊢ ( { 𝑊 ,  𝐴 }  ∈  𝐸  →  { 𝐴 ,  𝑊 }  ∈  𝐸 ) | 
						
							| 55 | 54 | anim2i | ⊢ ( ( { 𝑈 ,  𝐴 }  ∈  𝐸  ∧  { 𝑊 ,  𝐴 }  ∈  𝐸 )  →  ( { 𝑈 ,  𝐴 }  ∈  𝐸  ∧  { 𝐴 ,  𝑊 }  ∈  𝐸 ) ) | 
						
							| 56 | 51 55 | anim12i | ⊢ ( ( ( ( 𝐺  ∈  USGraph  ∧  ( ( 𝑋  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐴  ∈  ( Vtx ‘ 𝐺 ) )  ∧  ( 𝑈  ∈  ( Vtx ‘ 𝐺 )  ∧  𝑊  ∈  ( Vtx ‘ 𝐺 ) ) ) )  ∧  ( { 𝑈 ,  𝑋 }  ∈  𝐸  ∧  { 𝑊 ,  𝑋 }  ∈  𝐸 ) )  ∧  ( { 𝑈 ,  𝐴 }  ∈  𝐸  ∧  { 𝑊 ,  𝐴 }  ∈  𝐸 ) )  →  ( ( { 𝑊 ,  𝑋 }  ∈  𝐸  ∧  { 𝑋 ,  𝑈 }  ∈  𝐸 )  ∧  ( { 𝑈 ,  𝐴 }  ∈  𝐸  ∧  { 𝐴 ,  𝑊 }  ∈  𝐸 ) ) ) | 
						
							| 57 | 56 | adantr | ⊢ ( ( ( ( ( 𝐺  ∈  USGraph  ∧  ( ( 𝑋  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐴  ∈  ( Vtx ‘ 𝐺 ) )  ∧  ( 𝑈  ∈  ( Vtx ‘ 𝐺 )  ∧  𝑊  ∈  ( Vtx ‘ 𝐺 ) ) ) )  ∧  ( { 𝑈 ,  𝑋 }  ∈  𝐸  ∧  { 𝑊 ,  𝑋 }  ∈  𝐸 ) )  ∧  ( { 𝑈 ,  𝐴 }  ∈  𝐸  ∧  { 𝑊 ,  𝐴 }  ∈  𝐸 ) )  ∧  ( 𝐴  ≠  𝑋  ∧  𝑈  ≠  𝑊 ) )  →  ( ( { 𝑊 ,  𝑋 }  ∈  𝐸  ∧  { 𝑋 ,  𝑈 }  ∈  𝐸 )  ∧  ( { 𝑈 ,  𝐴 }  ∈  𝐸  ∧  { 𝐴 ,  𝑊 }  ∈  𝐸 ) ) ) | 
						
							| 58 | 14 1 | 4cyclusnfrgr | ⊢ ( ( 𝐺  ∈  USGraph  ∧  ( 𝑊  ∈  ( Vtx ‘ 𝐺 )  ∧  𝑈  ∈  ( Vtx ‘ 𝐺 )  ∧  𝑊  ≠  𝑈 )  ∧  ( 𝑋  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐴  ∈  ( Vtx ‘ 𝐺 )  ∧  𝑋  ≠  𝐴 ) )  →  ( ( ( { 𝑊 ,  𝑋 }  ∈  𝐸  ∧  { 𝑋 ,  𝑈 }  ∈  𝐸 )  ∧  ( { 𝑈 ,  𝐴 }  ∈  𝐸  ∧  { 𝐴 ,  𝑊 }  ∈  𝐸 ) )  →  𝐺  ∉   FriendGraph  ) ) | 
						
							| 59 | 46 57 58 | sylc | ⊢ ( ( ( ( ( 𝐺  ∈  USGraph  ∧  ( ( 𝑋  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐴  ∈  ( Vtx ‘ 𝐺 ) )  ∧  ( 𝑈  ∈  ( Vtx ‘ 𝐺 )  ∧  𝑊  ∈  ( Vtx ‘ 𝐺 ) ) ) )  ∧  ( { 𝑈 ,  𝑋 }  ∈  𝐸  ∧  { 𝑊 ,  𝑋 }  ∈  𝐸 ) )  ∧  ( { 𝑈 ,  𝐴 }  ∈  𝐸  ∧  { 𝑊 ,  𝐴 }  ∈  𝐸 ) )  ∧  ( 𝐴  ≠  𝑋  ∧  𝑈  ≠  𝑊 ) )  →  𝐺  ∉   FriendGraph  ) | 
						
							| 60 |  | df-nel | ⊢ ( 𝐺  ∉   FriendGraph   ↔  ¬  𝐺  ∈   FriendGraph  ) | 
						
							| 61 | 59 60 | sylib | ⊢ ( ( ( ( ( 𝐺  ∈  USGraph  ∧  ( ( 𝑋  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐴  ∈  ( Vtx ‘ 𝐺 ) )  ∧  ( 𝑈  ∈  ( Vtx ‘ 𝐺 )  ∧  𝑊  ∈  ( Vtx ‘ 𝐺 ) ) ) )  ∧  ( { 𝑈 ,  𝑋 }  ∈  𝐸  ∧  { 𝑊 ,  𝑋 }  ∈  𝐸 ) )  ∧  ( { 𝑈 ,  𝐴 }  ∈  𝐸  ∧  { 𝑊 ,  𝐴 }  ∈  𝐸 ) )  ∧  ( 𝐴  ≠  𝑋  ∧  𝑈  ≠  𝑊 ) )  →  ¬  𝐺  ∈   FriendGraph  ) | 
						
							| 62 | 61 | pm2.21d | ⊢ ( ( ( ( ( 𝐺  ∈  USGraph  ∧  ( ( 𝑋  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐴  ∈  ( Vtx ‘ 𝐺 ) )  ∧  ( 𝑈  ∈  ( Vtx ‘ 𝐺 )  ∧  𝑊  ∈  ( Vtx ‘ 𝐺 ) ) ) )  ∧  ( { 𝑈 ,  𝑋 }  ∈  𝐸  ∧  { 𝑊 ,  𝑋 }  ∈  𝐸 ) )  ∧  ( { 𝑈 ,  𝐴 }  ∈  𝐸  ∧  { 𝑊 ,  𝐴 }  ∈  𝐸 ) )  ∧  ( 𝐴  ≠  𝑋  ∧  𝑈  ≠  𝑊 ) )  →  ( 𝐺  ∈   FriendGraph   →  𝐴  =  𝑋 ) ) | 
						
							| 63 | 62 | ex | ⊢ ( ( ( ( 𝐺  ∈  USGraph  ∧  ( ( 𝑋  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐴  ∈  ( Vtx ‘ 𝐺 ) )  ∧  ( 𝑈  ∈  ( Vtx ‘ 𝐺 )  ∧  𝑊  ∈  ( Vtx ‘ 𝐺 ) ) ) )  ∧  ( { 𝑈 ,  𝑋 }  ∈  𝐸  ∧  { 𝑊 ,  𝑋 }  ∈  𝐸 ) )  ∧  ( { 𝑈 ,  𝐴 }  ∈  𝐸  ∧  { 𝑊 ,  𝐴 }  ∈  𝐸 ) )  →  ( ( 𝐴  ≠  𝑋  ∧  𝑈  ≠  𝑊 )  →  ( 𝐺  ∈   FriendGraph   →  𝐴  =  𝑋 ) ) ) | 
						
							| 64 | 63 | com23 | ⊢ ( ( ( ( 𝐺  ∈  USGraph  ∧  ( ( 𝑋  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐴  ∈  ( Vtx ‘ 𝐺 ) )  ∧  ( 𝑈  ∈  ( Vtx ‘ 𝐺 )  ∧  𝑊  ∈  ( Vtx ‘ 𝐺 ) ) ) )  ∧  ( { 𝑈 ,  𝑋 }  ∈  𝐸  ∧  { 𝑊 ,  𝑋 }  ∈  𝐸 ) )  ∧  ( { 𝑈 ,  𝐴 }  ∈  𝐸  ∧  { 𝑊 ,  𝐴 }  ∈  𝐸 ) )  →  ( 𝐺  ∈   FriendGraph   →  ( ( 𝐴  ≠  𝑋  ∧  𝑈  ≠  𝑊 )  →  𝐴  =  𝑋 ) ) ) | 
						
							| 65 | 64 | exp41 | ⊢ ( 𝐺  ∈  USGraph  →  ( ( ( 𝑋  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐴  ∈  ( Vtx ‘ 𝐺 ) )  ∧  ( 𝑈  ∈  ( Vtx ‘ 𝐺 )  ∧  𝑊  ∈  ( Vtx ‘ 𝐺 ) ) )  →  ( ( { 𝑈 ,  𝑋 }  ∈  𝐸  ∧  { 𝑊 ,  𝑋 }  ∈  𝐸 )  →  ( ( { 𝑈 ,  𝐴 }  ∈  𝐸  ∧  { 𝑊 ,  𝐴 }  ∈  𝐸 )  →  ( 𝐺  ∈   FriendGraph   →  ( ( 𝐴  ≠  𝑋  ∧  𝑈  ≠  𝑊 )  →  𝐴  =  𝑋 ) ) ) ) ) ) | 
						
							| 66 | 65 | com25 | ⊢ ( 𝐺  ∈  USGraph  →  ( 𝐺  ∈   FriendGraph   →  ( ( { 𝑈 ,  𝑋 }  ∈  𝐸  ∧  { 𝑊 ,  𝑋 }  ∈  𝐸 )  →  ( ( { 𝑈 ,  𝐴 }  ∈  𝐸  ∧  { 𝑊 ,  𝐴 }  ∈  𝐸 )  →  ( ( ( 𝑋  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐴  ∈  ( Vtx ‘ 𝐺 ) )  ∧  ( 𝑈  ∈  ( Vtx ‘ 𝐺 )  ∧  𝑊  ∈  ( Vtx ‘ 𝐺 ) ) )  →  ( ( 𝐴  ≠  𝑋  ∧  𝑈  ≠  𝑊 )  →  𝐴  =  𝑋 ) ) ) ) ) ) | 
						
							| 67 | 3 66 | mpcom | ⊢ ( 𝐺  ∈   FriendGraph   →  ( ( { 𝑈 ,  𝑋 }  ∈  𝐸  ∧  { 𝑊 ,  𝑋 }  ∈  𝐸 )  →  ( ( { 𝑈 ,  𝐴 }  ∈  𝐸  ∧  { 𝑊 ,  𝐴 }  ∈  𝐸 )  →  ( ( ( 𝑋  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐴  ∈  ( Vtx ‘ 𝐺 ) )  ∧  ( 𝑈  ∈  ( Vtx ‘ 𝐺 )  ∧  𝑊  ∈  ( Vtx ‘ 𝐺 ) ) )  →  ( ( 𝐴  ≠  𝑋  ∧  𝑈  ≠  𝑊 )  →  𝐴  =  𝑋 ) ) ) ) ) | 
						
							| 68 | 67 | com15 | ⊢ ( ( 𝐴  ≠  𝑋  ∧  𝑈  ≠  𝑊 )  →  ( ( { 𝑈 ,  𝑋 }  ∈  𝐸  ∧  { 𝑊 ,  𝑋 }  ∈  𝐸 )  →  ( ( { 𝑈 ,  𝐴 }  ∈  𝐸  ∧  { 𝑊 ,  𝐴 }  ∈  𝐸 )  →  ( ( ( 𝑋  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐴  ∈  ( Vtx ‘ 𝐺 ) )  ∧  ( 𝑈  ∈  ( Vtx ‘ 𝐺 )  ∧  𝑊  ∈  ( Vtx ‘ 𝐺 ) ) )  →  ( 𝐺  ∈   FriendGraph   →  𝐴  =  𝑋 ) ) ) ) ) | 
						
							| 69 | 68 | ex | ⊢ ( 𝐴  ≠  𝑋  →  ( 𝑈  ≠  𝑊  →  ( ( { 𝑈 ,  𝑋 }  ∈  𝐸  ∧  { 𝑊 ,  𝑋 }  ∈  𝐸 )  →  ( ( { 𝑈 ,  𝐴 }  ∈  𝐸  ∧  { 𝑊 ,  𝐴 }  ∈  𝐸 )  →  ( ( ( 𝑋  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐴  ∈  ( Vtx ‘ 𝐺 ) )  ∧  ( 𝑈  ∈  ( Vtx ‘ 𝐺 )  ∧  𝑊  ∈  ( Vtx ‘ 𝐺 ) ) )  →  ( 𝐺  ∈   FriendGraph   →  𝐴  =  𝑋 ) ) ) ) ) ) | 
						
							| 70 | 25 69 | pm2.61ine | ⊢ ( 𝑈  ≠  𝑊  →  ( ( { 𝑈 ,  𝑋 }  ∈  𝐸  ∧  { 𝑊 ,  𝑋 }  ∈  𝐸 )  →  ( ( { 𝑈 ,  𝐴 }  ∈  𝐸  ∧  { 𝑊 ,  𝐴 }  ∈  𝐸 )  →  ( ( ( 𝑋  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐴  ∈  ( Vtx ‘ 𝐺 ) )  ∧  ( 𝑈  ∈  ( Vtx ‘ 𝐺 )  ∧  𝑊  ∈  ( Vtx ‘ 𝐺 ) ) )  →  ( 𝐺  ∈   FriendGraph   →  𝐴  =  𝑋 ) ) ) ) ) | 
						
							| 71 | 70 | imp | ⊢ ( ( 𝑈  ≠  𝑊  ∧  ( { 𝑈 ,  𝑋 }  ∈  𝐸  ∧  { 𝑊 ,  𝑋 }  ∈  𝐸 ) )  →  ( ( { 𝑈 ,  𝐴 }  ∈  𝐸  ∧  { 𝑊 ,  𝐴 }  ∈  𝐸 )  →  ( ( ( 𝑋  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐴  ∈  ( Vtx ‘ 𝐺 ) )  ∧  ( 𝑈  ∈  ( Vtx ‘ 𝐺 )  ∧  𝑊  ∈  ( Vtx ‘ 𝐺 ) ) )  →  ( 𝐺  ∈   FriendGraph   →  𝐴  =  𝑋 ) ) ) ) | 
						
							| 72 | 71 | com13 | ⊢ ( ( ( 𝑋  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐴  ∈  ( Vtx ‘ 𝐺 ) )  ∧  ( 𝑈  ∈  ( Vtx ‘ 𝐺 )  ∧  𝑊  ∈  ( Vtx ‘ 𝐺 ) ) )  →  ( ( { 𝑈 ,  𝐴 }  ∈  𝐸  ∧  { 𝑊 ,  𝐴 }  ∈  𝐸 )  →  ( ( 𝑈  ≠  𝑊  ∧  ( { 𝑈 ,  𝑋 }  ∈  𝐸  ∧  { 𝑊 ,  𝑋 }  ∈  𝐸 ) )  →  ( 𝐺  ∈   FriendGraph   →  𝐴  =  𝑋 ) ) ) ) | 
						
							| 73 | 72 | ex | ⊢ ( ( 𝑋  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐴  ∈  ( Vtx ‘ 𝐺 ) )  →  ( ( 𝑈  ∈  ( Vtx ‘ 𝐺 )  ∧  𝑊  ∈  ( Vtx ‘ 𝐺 ) )  →  ( ( { 𝑈 ,  𝐴 }  ∈  𝐸  ∧  { 𝑊 ,  𝐴 }  ∈  𝐸 )  →  ( ( 𝑈  ≠  𝑊  ∧  ( { 𝑈 ,  𝑋 }  ∈  𝐸  ∧  { 𝑊 ,  𝑋 }  ∈  𝐸 ) )  →  ( 𝐺  ∈   FriendGraph   →  𝐴  =  𝑋 ) ) ) ) ) | 
						
							| 74 | 73 | com25 | ⊢ ( ( 𝑋  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐴  ∈  ( Vtx ‘ 𝐺 ) )  →  ( 𝐺  ∈   FriendGraph   →  ( ( { 𝑈 ,  𝐴 }  ∈  𝐸  ∧  { 𝑊 ,  𝐴 }  ∈  𝐸 )  →  ( ( 𝑈  ≠  𝑊  ∧  ( { 𝑈 ,  𝑋 }  ∈  𝐸  ∧  { 𝑊 ,  𝑋 }  ∈  𝐸 ) )  →  ( ( 𝑈  ∈  ( Vtx ‘ 𝐺 )  ∧  𝑊  ∈  ( Vtx ‘ 𝐺 ) )  →  𝐴  =  𝑋 ) ) ) ) ) | 
						
							| 75 | 74 | ex | ⊢ ( 𝑋  ∈  ( Vtx ‘ 𝐺 )  →  ( 𝐴  ∈  ( Vtx ‘ 𝐺 )  →  ( 𝐺  ∈   FriendGraph   →  ( ( { 𝑈 ,  𝐴 }  ∈  𝐸  ∧  { 𝑊 ,  𝐴 }  ∈  𝐸 )  →  ( ( 𝑈  ≠  𝑊  ∧  ( { 𝑈 ,  𝑋 }  ∈  𝐸  ∧  { 𝑊 ,  𝑋 }  ∈  𝐸 ) )  →  ( ( 𝑈  ∈  ( Vtx ‘ 𝐺 )  ∧  𝑊  ∈  ( Vtx ‘ 𝐺 ) )  →  𝐴  =  𝑋 ) ) ) ) ) ) | 
						
							| 76 | 14 | nbgrcl | ⊢ ( 𝑈  ∈  ( 𝐺  NeighbVtx  𝑋 )  →  𝑋  ∈  ( Vtx ‘ 𝐺 ) ) | 
						
							| 77 | 76 2 | eleq2s | ⊢ ( 𝑈  ∈  𝐷  →  𝑋  ∈  ( Vtx ‘ 𝐺 ) ) | 
						
							| 78 | 77 | adantr | ⊢ ( ( 𝑈  ∈  𝐷  ∧  𝑊  ∈  𝐷 )  →  𝑋  ∈  ( Vtx ‘ 𝐺 ) ) | 
						
							| 79 | 78 | adantl | ⊢ ( ( 𝐺  ∈  USGraph  ∧  ( 𝑈  ∈  𝐷  ∧  𝑊  ∈  𝐷 ) )  →  𝑋  ∈  ( Vtx ‘ 𝐺 ) ) | 
						
							| 80 | 75 79 | syl11 | ⊢ ( 𝐴  ∈  ( Vtx ‘ 𝐺 )  →  ( ( 𝐺  ∈  USGraph  ∧  ( 𝑈  ∈  𝐷  ∧  𝑊  ∈  𝐷 ) )  →  ( 𝐺  ∈   FriendGraph   →  ( ( { 𝑈 ,  𝐴 }  ∈  𝐸  ∧  { 𝑊 ,  𝐴 }  ∈  𝐸 )  →  ( ( 𝑈  ≠  𝑊  ∧  ( { 𝑈 ,  𝑋 }  ∈  𝐸  ∧  { 𝑊 ,  𝑋 }  ∈  𝐸 ) )  →  ( ( 𝑈  ∈  ( Vtx ‘ 𝐺 )  ∧  𝑊  ∈  ( Vtx ‘ 𝐺 ) )  →  𝐴  =  𝑋 ) ) ) ) ) ) | 
						
							| 81 | 80 | com34 | ⊢ ( 𝐴  ∈  ( Vtx ‘ 𝐺 )  →  ( ( 𝐺  ∈  USGraph  ∧  ( 𝑈  ∈  𝐷  ∧  𝑊  ∈  𝐷 ) )  →  ( ( { 𝑈 ,  𝐴 }  ∈  𝐸  ∧  { 𝑊 ,  𝐴 }  ∈  𝐸 )  →  ( 𝐺  ∈   FriendGraph   →  ( ( 𝑈  ≠  𝑊  ∧  ( { 𝑈 ,  𝑋 }  ∈  𝐸  ∧  { 𝑊 ,  𝑋 }  ∈  𝐸 ) )  →  ( ( 𝑈  ∈  ( Vtx ‘ 𝐺 )  ∧  𝑊  ∈  ( Vtx ‘ 𝐺 ) )  →  𝐴  =  𝑋 ) ) ) ) ) ) | 
						
							| 82 | 81 | impd | ⊢ ( 𝐴  ∈  ( Vtx ‘ 𝐺 )  →  ( ( ( 𝐺  ∈  USGraph  ∧  ( 𝑈  ∈  𝐷  ∧  𝑊  ∈  𝐷 ) )  ∧  ( { 𝑈 ,  𝐴 }  ∈  𝐸  ∧  { 𝑊 ,  𝐴 }  ∈  𝐸 ) )  →  ( 𝐺  ∈   FriendGraph   →  ( ( 𝑈  ≠  𝑊  ∧  ( { 𝑈 ,  𝑋 }  ∈  𝐸  ∧  { 𝑊 ,  𝑋 }  ∈  𝐸 ) )  →  ( ( 𝑈  ∈  ( Vtx ‘ 𝐺 )  ∧  𝑊  ∈  ( Vtx ‘ 𝐺 ) )  →  𝐴  =  𝑋 ) ) ) ) ) | 
						
							| 83 | 82 | adantl | ⊢ ( ( 𝑈  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐴  ∈  ( Vtx ‘ 𝐺 ) )  →  ( ( ( 𝐺  ∈  USGraph  ∧  ( 𝑈  ∈  𝐷  ∧  𝑊  ∈  𝐷 ) )  ∧  ( { 𝑈 ,  𝐴 }  ∈  𝐸  ∧  { 𝑊 ,  𝐴 }  ∈  𝐸 ) )  →  ( 𝐺  ∈   FriendGraph   →  ( ( 𝑈  ≠  𝑊  ∧  ( { 𝑈 ,  𝑋 }  ∈  𝐸  ∧  { 𝑊 ,  𝑋 }  ∈  𝐸 ) )  →  ( ( 𝑈  ∈  ( Vtx ‘ 𝐺 )  ∧  𝑊  ∈  ( Vtx ‘ 𝐺 ) )  →  𝐴  =  𝑋 ) ) ) ) ) | 
						
							| 84 | 22 83 | mpcom | ⊢ ( ( ( 𝐺  ∈  USGraph  ∧  ( 𝑈  ∈  𝐷  ∧  𝑊  ∈  𝐷 ) )  ∧  ( { 𝑈 ,  𝐴 }  ∈  𝐸  ∧  { 𝑊 ,  𝐴 }  ∈  𝐸 ) )  →  ( 𝐺  ∈   FriendGraph   →  ( ( 𝑈  ≠  𝑊  ∧  ( { 𝑈 ,  𝑋 }  ∈  𝐸  ∧  { 𝑊 ,  𝑋 }  ∈  𝐸 ) )  →  ( ( 𝑈  ∈  ( Vtx ‘ 𝐺 )  ∧  𝑊  ∈  ( Vtx ‘ 𝐺 ) )  →  𝐴  =  𝑋 ) ) ) ) | 
						
							| 85 | 84 | ex | ⊢ ( ( 𝐺  ∈  USGraph  ∧  ( 𝑈  ∈  𝐷  ∧  𝑊  ∈  𝐷 ) )  →  ( ( { 𝑈 ,  𝐴 }  ∈  𝐸  ∧  { 𝑊 ,  𝐴 }  ∈  𝐸 )  →  ( 𝐺  ∈   FriendGraph   →  ( ( 𝑈  ≠  𝑊  ∧  ( { 𝑈 ,  𝑋 }  ∈  𝐸  ∧  { 𝑊 ,  𝑋 }  ∈  𝐸 ) )  →  ( ( 𝑈  ∈  ( Vtx ‘ 𝐺 )  ∧  𝑊  ∈  ( Vtx ‘ 𝐺 ) )  →  𝐴  =  𝑋 ) ) ) ) ) | 
						
							| 86 | 85 | com25 | ⊢ ( ( 𝐺  ∈  USGraph  ∧  ( 𝑈  ∈  𝐷  ∧  𝑊  ∈  𝐷 ) )  →  ( ( 𝑈  ∈  ( Vtx ‘ 𝐺 )  ∧  𝑊  ∈  ( Vtx ‘ 𝐺 ) )  →  ( 𝐺  ∈   FriendGraph   →  ( ( 𝑈  ≠  𝑊  ∧  ( { 𝑈 ,  𝑋 }  ∈  𝐸  ∧  { 𝑊 ,  𝑋 }  ∈  𝐸 ) )  →  ( ( { 𝑈 ,  𝐴 }  ∈  𝐸  ∧  { 𝑊 ,  𝐴 }  ∈  𝐸 )  →  𝐴  =  𝑋 ) ) ) ) ) | 
						
							| 87 | 86 | com14 | ⊢ ( ( 𝑈  ≠  𝑊  ∧  ( { 𝑈 ,  𝑋 }  ∈  𝐸  ∧  { 𝑊 ,  𝑋 }  ∈  𝐸 ) )  →  ( ( 𝑈  ∈  ( Vtx ‘ 𝐺 )  ∧  𝑊  ∈  ( Vtx ‘ 𝐺 ) )  →  ( 𝐺  ∈   FriendGraph   →  ( ( 𝐺  ∈  USGraph  ∧  ( 𝑈  ∈  𝐷  ∧  𝑊  ∈  𝐷 ) )  →  ( ( { 𝑈 ,  𝐴 }  ∈  𝐸  ∧  { 𝑊 ,  𝐴 }  ∈  𝐸 )  →  𝐴  =  𝑋 ) ) ) ) ) | 
						
							| 88 | 87 | ex | ⊢ ( 𝑈  ≠  𝑊  →  ( ( { 𝑈 ,  𝑋 }  ∈  𝐸  ∧  { 𝑊 ,  𝑋 }  ∈  𝐸 )  →  ( ( 𝑈  ∈  ( Vtx ‘ 𝐺 )  ∧  𝑊  ∈  ( Vtx ‘ 𝐺 ) )  →  ( 𝐺  ∈   FriendGraph   →  ( ( 𝐺  ∈  USGraph  ∧  ( 𝑈  ∈  𝐷  ∧  𝑊  ∈  𝐷 ) )  →  ( ( { 𝑈 ,  𝐴 }  ∈  𝐸  ∧  { 𝑊 ,  𝐴 }  ∈  𝐸 )  →  𝐴  =  𝑋 ) ) ) ) ) ) | 
						
							| 89 | 88 | com15 | ⊢ ( ( 𝐺  ∈  USGraph  ∧  ( 𝑈  ∈  𝐷  ∧  𝑊  ∈  𝐷 ) )  →  ( ( { 𝑈 ,  𝑋 }  ∈  𝐸  ∧  { 𝑊 ,  𝑋 }  ∈  𝐸 )  →  ( ( 𝑈  ∈  ( Vtx ‘ 𝐺 )  ∧  𝑊  ∈  ( Vtx ‘ 𝐺 ) )  →  ( 𝐺  ∈   FriendGraph   →  ( 𝑈  ≠  𝑊  →  ( ( { 𝑈 ,  𝐴 }  ∈  𝐸  ∧  { 𝑊 ,  𝐴 }  ∈  𝐸 )  →  𝐴  =  𝑋 ) ) ) ) ) ) | 
						
							| 90 | 13 20 89 | mp2d | ⊢ ( ( 𝐺  ∈  USGraph  ∧  ( 𝑈  ∈  𝐷  ∧  𝑊  ∈  𝐷 ) )  →  ( 𝐺  ∈   FriendGraph   →  ( 𝑈  ≠  𝑊  →  ( ( { 𝑈 ,  𝐴 }  ∈  𝐸  ∧  { 𝑊 ,  𝐴 }  ∈  𝐸 )  →  𝐴  =  𝑋 ) ) ) ) | 
						
							| 91 | 90 | ex | ⊢ ( 𝐺  ∈  USGraph  →  ( ( 𝑈  ∈  𝐷  ∧  𝑊  ∈  𝐷 )  →  ( 𝐺  ∈   FriendGraph   →  ( 𝑈  ≠  𝑊  →  ( ( { 𝑈 ,  𝐴 }  ∈  𝐸  ∧  { 𝑊 ,  𝐴 }  ∈  𝐸 )  →  𝐴  =  𝑋 ) ) ) ) ) | 
						
							| 92 | 91 | com23 | ⊢ ( 𝐺  ∈  USGraph  →  ( 𝐺  ∈   FriendGraph   →  ( ( 𝑈  ∈  𝐷  ∧  𝑊  ∈  𝐷 )  →  ( 𝑈  ≠  𝑊  →  ( ( { 𝑈 ,  𝐴 }  ∈  𝐸  ∧  { 𝑊 ,  𝐴 }  ∈  𝐸 )  →  𝐴  =  𝑋 ) ) ) ) ) | 
						
							| 93 | 3 92 | mpcom | ⊢ ( 𝐺  ∈   FriendGraph   →  ( ( 𝑈  ∈  𝐷  ∧  𝑊  ∈  𝐷 )  →  ( 𝑈  ≠  𝑊  →  ( ( { 𝑈 ,  𝐴 }  ∈  𝐸  ∧  { 𝑊 ,  𝐴 }  ∈  𝐸 )  →  𝐴  =  𝑋 ) ) ) ) | 
						
							| 94 | 93 | 3imp | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  ( 𝑈  ∈  𝐷  ∧  𝑊  ∈  𝐷 )  ∧  𝑈  ≠  𝑊 )  →  ( ( { 𝑈 ,  𝐴 }  ∈  𝐸  ∧  { 𝑊 ,  𝐴 }  ∈  𝐸 )  →  𝐴  =  𝑋 ) ) |