Step |
Hyp |
Ref |
Expression |
1 |
|
frgrncvvdeq.v1 |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
frgrncvvdeq.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
3 |
|
frgrncvvdeq.nx |
⊢ 𝐷 = ( 𝐺 NeighbVtx 𝑋 ) |
4 |
|
frgrncvvdeq.ny |
⊢ 𝑁 = ( 𝐺 NeighbVtx 𝑌 ) |
5 |
|
frgrncvvdeq.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
6 |
|
frgrncvvdeq.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
7 |
|
frgrncvvdeq.ne |
⊢ ( 𝜑 → 𝑋 ≠ 𝑌 ) |
8 |
|
frgrncvvdeq.xy |
⊢ ( 𝜑 → 𝑌 ∉ 𝐷 ) |
9 |
|
frgrncvvdeq.f |
⊢ ( 𝜑 → 𝐺 ∈ FriendGraph ) |
10 |
|
frgrncvvdeq.a |
⊢ 𝐴 = ( 𝑥 ∈ 𝐷 ↦ ( ℩ 𝑦 ∈ 𝑁 { 𝑥 , 𝑦 } ∈ 𝐸 ) ) |
11 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → 𝐺 ∈ FriendGraph ) |
12 |
3
|
eleq2i |
⊢ ( 𝑥 ∈ 𝐷 ↔ 𝑥 ∈ ( 𝐺 NeighbVtx 𝑋 ) ) |
13 |
1
|
nbgrisvtx |
⊢ ( 𝑥 ∈ ( 𝐺 NeighbVtx 𝑋 ) → 𝑥 ∈ 𝑉 ) |
14 |
13
|
a1i |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐺 NeighbVtx 𝑋 ) → 𝑥 ∈ 𝑉 ) ) |
15 |
12 14
|
syl5bi |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐷 → 𝑥 ∈ 𝑉 ) ) |
16 |
15
|
imp |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → 𝑥 ∈ 𝑉 ) |
17 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → 𝑌 ∈ 𝑉 ) |
18 |
|
elnelne2 |
⊢ ( ( 𝑥 ∈ 𝐷 ∧ 𝑌 ∉ 𝐷 ) → 𝑥 ≠ 𝑌 ) |
19 |
18
|
expcom |
⊢ ( 𝑌 ∉ 𝐷 → ( 𝑥 ∈ 𝐷 → 𝑥 ≠ 𝑌 ) ) |
20 |
8 19
|
syl |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐷 → 𝑥 ≠ 𝑌 ) ) |
21 |
20
|
imp |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → 𝑥 ≠ 𝑌 ) |
22 |
16 17 21
|
3jca |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( 𝑥 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑥 ≠ 𝑌 ) ) |
23 |
1 2
|
frcond1 |
⊢ ( 𝐺 ∈ FriendGraph → ( ( 𝑥 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑥 ≠ 𝑌 ) → ∃! 𝑦 ∈ 𝑉 { { 𝑥 , 𝑦 } , { 𝑦 , 𝑌 } } ⊆ 𝐸 ) ) |
24 |
11 22 23
|
sylc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ∃! 𝑦 ∈ 𝑉 { { 𝑥 , 𝑦 } , { 𝑦 , 𝑌 } } ⊆ 𝐸 ) |
25 |
|
frgrusgr |
⊢ ( 𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph ) |
26 |
|
prex |
⊢ { 𝑥 , 𝑦 } ∈ V |
27 |
|
prex |
⊢ { 𝑦 , 𝑌 } ∈ V |
28 |
26 27
|
prss |
⊢ ( ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑦 , 𝑌 } ∈ 𝐸 ) ↔ { { 𝑥 , 𝑦 } , { 𝑦 , 𝑌 } } ⊆ 𝐸 ) |
29 |
|
ancom |
⊢ ( ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑦 , 𝑌 } ∈ 𝐸 ) ↔ ( { 𝑦 , 𝑌 } ∈ 𝐸 ∧ { 𝑥 , 𝑦 } ∈ 𝐸 ) ) |
30 |
28 29
|
bitr3i |
⊢ ( { { 𝑥 , 𝑦 } , { 𝑦 , 𝑌 } } ⊆ 𝐸 ↔ ( { 𝑦 , 𝑌 } ∈ 𝐸 ∧ { 𝑥 , 𝑦 } ∈ 𝐸 ) ) |
31 |
30
|
anbi2i |
⊢ ( ( 𝑦 ∈ 𝑉 ∧ { { 𝑥 , 𝑦 } , { 𝑦 , 𝑌 } } ⊆ 𝐸 ) ↔ ( 𝑦 ∈ 𝑉 ∧ ( { 𝑦 , 𝑌 } ∈ 𝐸 ∧ { 𝑥 , 𝑦 } ∈ 𝐸 ) ) ) |
32 |
|
usgrumgr |
⊢ ( 𝐺 ∈ USGraph → 𝐺 ∈ UMGraph ) |
33 |
1 2
|
umgrpredgv |
⊢ ( ( 𝐺 ∈ UMGraph ∧ { 𝑥 , 𝑦 } ∈ 𝐸 ) → ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) |
34 |
33
|
simprd |
⊢ ( ( 𝐺 ∈ UMGraph ∧ { 𝑥 , 𝑦 } ∈ 𝐸 ) → 𝑦 ∈ 𝑉 ) |
35 |
34
|
ex |
⊢ ( 𝐺 ∈ UMGraph → ( { 𝑥 , 𝑦 } ∈ 𝐸 → 𝑦 ∈ 𝑉 ) ) |
36 |
32 35
|
syl |
⊢ ( 𝐺 ∈ USGraph → ( { 𝑥 , 𝑦 } ∈ 𝐸 → 𝑦 ∈ 𝑉 ) ) |
37 |
36
|
adantld |
⊢ ( 𝐺 ∈ USGraph → ( ( { 𝑦 , 𝑌 } ∈ 𝐸 ∧ { 𝑥 , 𝑦 } ∈ 𝐸 ) → 𝑦 ∈ 𝑉 ) ) |
38 |
37
|
pm4.71rd |
⊢ ( 𝐺 ∈ USGraph → ( ( { 𝑦 , 𝑌 } ∈ 𝐸 ∧ { 𝑥 , 𝑦 } ∈ 𝐸 ) ↔ ( 𝑦 ∈ 𝑉 ∧ ( { 𝑦 , 𝑌 } ∈ 𝐸 ∧ { 𝑥 , 𝑦 } ∈ 𝐸 ) ) ) ) |
39 |
31 38
|
bitr4id |
⊢ ( 𝐺 ∈ USGraph → ( ( 𝑦 ∈ 𝑉 ∧ { { 𝑥 , 𝑦 } , { 𝑦 , 𝑌 } } ⊆ 𝐸 ) ↔ ( { 𝑦 , 𝑌 } ∈ 𝐸 ∧ { 𝑥 , 𝑦 } ∈ 𝐸 ) ) ) |
40 |
4
|
eleq2i |
⊢ ( 𝑦 ∈ 𝑁 ↔ 𝑦 ∈ ( 𝐺 NeighbVtx 𝑌 ) ) |
41 |
2
|
nbusgreledg |
⊢ ( 𝐺 ∈ USGraph → ( 𝑦 ∈ ( 𝐺 NeighbVtx 𝑌 ) ↔ { 𝑦 , 𝑌 } ∈ 𝐸 ) ) |
42 |
40 41
|
bitr2id |
⊢ ( 𝐺 ∈ USGraph → ( { 𝑦 , 𝑌 } ∈ 𝐸 ↔ 𝑦 ∈ 𝑁 ) ) |
43 |
42
|
anbi1d |
⊢ ( 𝐺 ∈ USGraph → ( ( { 𝑦 , 𝑌 } ∈ 𝐸 ∧ { 𝑥 , 𝑦 } ∈ 𝐸 ) ↔ ( 𝑦 ∈ 𝑁 ∧ { 𝑥 , 𝑦 } ∈ 𝐸 ) ) ) |
44 |
39 43
|
bitrd |
⊢ ( 𝐺 ∈ USGraph → ( ( 𝑦 ∈ 𝑉 ∧ { { 𝑥 , 𝑦 } , { 𝑦 , 𝑌 } } ⊆ 𝐸 ) ↔ ( 𝑦 ∈ 𝑁 ∧ { 𝑥 , 𝑦 } ∈ 𝐸 ) ) ) |
45 |
44
|
eubidv |
⊢ ( 𝐺 ∈ USGraph → ( ∃! 𝑦 ( 𝑦 ∈ 𝑉 ∧ { { 𝑥 , 𝑦 } , { 𝑦 , 𝑌 } } ⊆ 𝐸 ) ↔ ∃! 𝑦 ( 𝑦 ∈ 𝑁 ∧ { 𝑥 , 𝑦 } ∈ 𝐸 ) ) ) |
46 |
45
|
biimpd |
⊢ ( 𝐺 ∈ USGraph → ( ∃! 𝑦 ( 𝑦 ∈ 𝑉 ∧ { { 𝑥 , 𝑦 } , { 𝑦 , 𝑌 } } ⊆ 𝐸 ) → ∃! 𝑦 ( 𝑦 ∈ 𝑁 ∧ { 𝑥 , 𝑦 } ∈ 𝐸 ) ) ) |
47 |
|
df-reu |
⊢ ( ∃! 𝑦 ∈ 𝑉 { { 𝑥 , 𝑦 } , { 𝑦 , 𝑌 } } ⊆ 𝐸 ↔ ∃! 𝑦 ( 𝑦 ∈ 𝑉 ∧ { { 𝑥 , 𝑦 } , { 𝑦 , 𝑌 } } ⊆ 𝐸 ) ) |
48 |
|
df-reu |
⊢ ( ∃! 𝑦 ∈ 𝑁 { 𝑥 , 𝑦 } ∈ 𝐸 ↔ ∃! 𝑦 ( 𝑦 ∈ 𝑁 ∧ { 𝑥 , 𝑦 } ∈ 𝐸 ) ) |
49 |
46 47 48
|
3imtr4g |
⊢ ( 𝐺 ∈ USGraph → ( ∃! 𝑦 ∈ 𝑉 { { 𝑥 , 𝑦 } , { 𝑦 , 𝑌 } } ⊆ 𝐸 → ∃! 𝑦 ∈ 𝑁 { 𝑥 , 𝑦 } ∈ 𝐸 ) ) |
50 |
9 25 49
|
3syl |
⊢ ( 𝜑 → ( ∃! 𝑦 ∈ 𝑉 { { 𝑥 , 𝑦 } , { 𝑦 , 𝑌 } } ⊆ 𝐸 → ∃! 𝑦 ∈ 𝑁 { 𝑥 , 𝑦 } ∈ 𝐸 ) ) |
51 |
50
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( ∃! 𝑦 ∈ 𝑉 { { 𝑥 , 𝑦 } , { 𝑦 , 𝑌 } } ⊆ 𝐸 → ∃! 𝑦 ∈ 𝑁 { 𝑥 , 𝑦 } ∈ 𝐸 ) ) |
52 |
24 51
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ∃! 𝑦 ∈ 𝑁 { 𝑥 , 𝑦 } ∈ 𝐸 ) |