Metamath Proof Explorer


Theorem frgrncvvdeqlem2

Description: Lemma 2 for frgrncvvdeq . In a friendship graph, for each neighbor of a vertex there is exactly one neighbor of another vertex so that there is an edge between these two neighbors. (Contributed by Alexander van der Vekens, 22-Dec-2017) (Revised by AV, 10-May-2021) (Proof shortened by AV, 12-Feb-2022)

Ref Expression
Hypotheses frgrncvvdeq.v1 𝑉 = ( Vtx ‘ 𝐺 )
frgrncvvdeq.e 𝐸 = ( Edg ‘ 𝐺 )
frgrncvvdeq.nx 𝐷 = ( 𝐺 NeighbVtx 𝑋 )
frgrncvvdeq.ny 𝑁 = ( 𝐺 NeighbVtx 𝑌 )
frgrncvvdeq.x ( 𝜑𝑋𝑉 )
frgrncvvdeq.y ( 𝜑𝑌𝑉 )
frgrncvvdeq.ne ( 𝜑𝑋𝑌 )
frgrncvvdeq.xy ( 𝜑𝑌𝐷 )
frgrncvvdeq.f ( 𝜑𝐺 ∈ FriendGraph )
frgrncvvdeq.a 𝐴 = ( 𝑥𝐷 ↦ ( 𝑦𝑁 { 𝑥 , 𝑦 } ∈ 𝐸 ) )
Assertion frgrncvvdeqlem2 ( ( 𝜑𝑥𝐷 ) → ∃! 𝑦𝑁 { 𝑥 , 𝑦 } ∈ 𝐸 )

Proof

Step Hyp Ref Expression
1 frgrncvvdeq.v1 𝑉 = ( Vtx ‘ 𝐺 )
2 frgrncvvdeq.e 𝐸 = ( Edg ‘ 𝐺 )
3 frgrncvvdeq.nx 𝐷 = ( 𝐺 NeighbVtx 𝑋 )
4 frgrncvvdeq.ny 𝑁 = ( 𝐺 NeighbVtx 𝑌 )
5 frgrncvvdeq.x ( 𝜑𝑋𝑉 )
6 frgrncvvdeq.y ( 𝜑𝑌𝑉 )
7 frgrncvvdeq.ne ( 𝜑𝑋𝑌 )
8 frgrncvvdeq.xy ( 𝜑𝑌𝐷 )
9 frgrncvvdeq.f ( 𝜑𝐺 ∈ FriendGraph )
10 frgrncvvdeq.a 𝐴 = ( 𝑥𝐷 ↦ ( 𝑦𝑁 { 𝑥 , 𝑦 } ∈ 𝐸 ) )
11 9 adantr ( ( 𝜑𝑥𝐷 ) → 𝐺 ∈ FriendGraph )
12 3 eleq2i ( 𝑥𝐷𝑥 ∈ ( 𝐺 NeighbVtx 𝑋 ) )
13 1 nbgrisvtx ( 𝑥 ∈ ( 𝐺 NeighbVtx 𝑋 ) → 𝑥𝑉 )
14 13 a1i ( 𝜑 → ( 𝑥 ∈ ( 𝐺 NeighbVtx 𝑋 ) → 𝑥𝑉 ) )
15 12 14 syl5bi ( 𝜑 → ( 𝑥𝐷𝑥𝑉 ) )
16 15 imp ( ( 𝜑𝑥𝐷 ) → 𝑥𝑉 )
17 6 adantr ( ( 𝜑𝑥𝐷 ) → 𝑌𝑉 )
18 elnelne2 ( ( 𝑥𝐷𝑌𝐷 ) → 𝑥𝑌 )
19 18 expcom ( 𝑌𝐷 → ( 𝑥𝐷𝑥𝑌 ) )
20 8 19 syl ( 𝜑 → ( 𝑥𝐷𝑥𝑌 ) )
21 20 imp ( ( 𝜑𝑥𝐷 ) → 𝑥𝑌 )
22 16 17 21 3jca ( ( 𝜑𝑥𝐷 ) → ( 𝑥𝑉𝑌𝑉𝑥𝑌 ) )
23 1 2 frcond1 ( 𝐺 ∈ FriendGraph → ( ( 𝑥𝑉𝑌𝑉𝑥𝑌 ) → ∃! 𝑦𝑉 { { 𝑥 , 𝑦 } , { 𝑦 , 𝑌 } } ⊆ 𝐸 ) )
24 11 22 23 sylc ( ( 𝜑𝑥𝐷 ) → ∃! 𝑦𝑉 { { 𝑥 , 𝑦 } , { 𝑦 , 𝑌 } } ⊆ 𝐸 )
25 frgrusgr ( 𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph )
26 prex { 𝑥 , 𝑦 } ∈ V
27 prex { 𝑦 , 𝑌 } ∈ V
28 26 27 prss ( ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑦 , 𝑌 } ∈ 𝐸 ) ↔ { { 𝑥 , 𝑦 } , { 𝑦 , 𝑌 } } ⊆ 𝐸 )
29 ancom ( ( { 𝑥 , 𝑦 } ∈ 𝐸 ∧ { 𝑦 , 𝑌 } ∈ 𝐸 ) ↔ ( { 𝑦 , 𝑌 } ∈ 𝐸 ∧ { 𝑥 , 𝑦 } ∈ 𝐸 ) )
30 28 29 bitr3i ( { { 𝑥 , 𝑦 } , { 𝑦 , 𝑌 } } ⊆ 𝐸 ↔ ( { 𝑦 , 𝑌 } ∈ 𝐸 ∧ { 𝑥 , 𝑦 } ∈ 𝐸 ) )
31 30 anbi2i ( ( 𝑦𝑉 ∧ { { 𝑥 , 𝑦 } , { 𝑦 , 𝑌 } } ⊆ 𝐸 ) ↔ ( 𝑦𝑉 ∧ ( { 𝑦 , 𝑌 } ∈ 𝐸 ∧ { 𝑥 , 𝑦 } ∈ 𝐸 ) ) )
32 usgrumgr ( 𝐺 ∈ USGraph → 𝐺 ∈ UMGraph )
33 1 2 umgrpredgv ( ( 𝐺 ∈ UMGraph ∧ { 𝑥 , 𝑦 } ∈ 𝐸 ) → ( 𝑥𝑉𝑦𝑉 ) )
34 33 simprd ( ( 𝐺 ∈ UMGraph ∧ { 𝑥 , 𝑦 } ∈ 𝐸 ) → 𝑦𝑉 )
35 34 ex ( 𝐺 ∈ UMGraph → ( { 𝑥 , 𝑦 } ∈ 𝐸𝑦𝑉 ) )
36 32 35 syl ( 𝐺 ∈ USGraph → ( { 𝑥 , 𝑦 } ∈ 𝐸𝑦𝑉 ) )
37 36 adantld ( 𝐺 ∈ USGraph → ( ( { 𝑦 , 𝑌 } ∈ 𝐸 ∧ { 𝑥 , 𝑦 } ∈ 𝐸 ) → 𝑦𝑉 ) )
38 37 pm4.71rd ( 𝐺 ∈ USGraph → ( ( { 𝑦 , 𝑌 } ∈ 𝐸 ∧ { 𝑥 , 𝑦 } ∈ 𝐸 ) ↔ ( 𝑦𝑉 ∧ ( { 𝑦 , 𝑌 } ∈ 𝐸 ∧ { 𝑥 , 𝑦 } ∈ 𝐸 ) ) ) )
39 31 38 bitr4id ( 𝐺 ∈ USGraph → ( ( 𝑦𝑉 ∧ { { 𝑥 , 𝑦 } , { 𝑦 , 𝑌 } } ⊆ 𝐸 ) ↔ ( { 𝑦 , 𝑌 } ∈ 𝐸 ∧ { 𝑥 , 𝑦 } ∈ 𝐸 ) ) )
40 4 eleq2i ( 𝑦𝑁𝑦 ∈ ( 𝐺 NeighbVtx 𝑌 ) )
41 2 nbusgreledg ( 𝐺 ∈ USGraph → ( 𝑦 ∈ ( 𝐺 NeighbVtx 𝑌 ) ↔ { 𝑦 , 𝑌 } ∈ 𝐸 ) )
42 40 41 bitr2id ( 𝐺 ∈ USGraph → ( { 𝑦 , 𝑌 } ∈ 𝐸𝑦𝑁 ) )
43 42 anbi1d ( 𝐺 ∈ USGraph → ( ( { 𝑦 , 𝑌 } ∈ 𝐸 ∧ { 𝑥 , 𝑦 } ∈ 𝐸 ) ↔ ( 𝑦𝑁 ∧ { 𝑥 , 𝑦 } ∈ 𝐸 ) ) )
44 39 43 bitrd ( 𝐺 ∈ USGraph → ( ( 𝑦𝑉 ∧ { { 𝑥 , 𝑦 } , { 𝑦 , 𝑌 } } ⊆ 𝐸 ) ↔ ( 𝑦𝑁 ∧ { 𝑥 , 𝑦 } ∈ 𝐸 ) ) )
45 44 eubidv ( 𝐺 ∈ USGraph → ( ∃! 𝑦 ( 𝑦𝑉 ∧ { { 𝑥 , 𝑦 } , { 𝑦 , 𝑌 } } ⊆ 𝐸 ) ↔ ∃! 𝑦 ( 𝑦𝑁 ∧ { 𝑥 , 𝑦 } ∈ 𝐸 ) ) )
46 45 biimpd ( 𝐺 ∈ USGraph → ( ∃! 𝑦 ( 𝑦𝑉 ∧ { { 𝑥 , 𝑦 } , { 𝑦 , 𝑌 } } ⊆ 𝐸 ) → ∃! 𝑦 ( 𝑦𝑁 ∧ { 𝑥 , 𝑦 } ∈ 𝐸 ) ) )
47 df-reu ( ∃! 𝑦𝑉 { { 𝑥 , 𝑦 } , { 𝑦 , 𝑌 } } ⊆ 𝐸 ↔ ∃! 𝑦 ( 𝑦𝑉 ∧ { { 𝑥 , 𝑦 } , { 𝑦 , 𝑌 } } ⊆ 𝐸 ) )
48 df-reu ( ∃! 𝑦𝑁 { 𝑥 , 𝑦 } ∈ 𝐸 ↔ ∃! 𝑦 ( 𝑦𝑁 ∧ { 𝑥 , 𝑦 } ∈ 𝐸 ) )
49 46 47 48 3imtr4g ( 𝐺 ∈ USGraph → ( ∃! 𝑦𝑉 { { 𝑥 , 𝑦 } , { 𝑦 , 𝑌 } } ⊆ 𝐸 → ∃! 𝑦𝑁 { 𝑥 , 𝑦 } ∈ 𝐸 ) )
50 9 25 49 3syl ( 𝜑 → ( ∃! 𝑦𝑉 { { 𝑥 , 𝑦 } , { 𝑦 , 𝑌 } } ⊆ 𝐸 → ∃! 𝑦𝑁 { 𝑥 , 𝑦 } ∈ 𝐸 ) )
51 50 adantr ( ( 𝜑𝑥𝐷 ) → ( ∃! 𝑦𝑉 { { 𝑥 , 𝑦 } , { 𝑦 , 𝑌 } } ⊆ 𝐸 → ∃! 𝑦𝑁 { 𝑥 , 𝑦 } ∈ 𝐸 ) )
52 24 51 mpd ( ( 𝜑𝑥𝐷 ) → ∃! 𝑦𝑁 { 𝑥 , 𝑦 } ∈ 𝐸 )