Step |
Hyp |
Ref |
Expression |
1 |
|
frgrncvvdeq.v1 |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
frgrncvvdeq.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
3 |
|
frgrncvvdeq.nx |
⊢ 𝐷 = ( 𝐺 NeighbVtx 𝑋 ) |
4 |
|
frgrncvvdeq.ny |
⊢ 𝑁 = ( 𝐺 NeighbVtx 𝑌 ) |
5 |
|
frgrncvvdeq.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
6 |
|
frgrncvvdeq.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
7 |
|
frgrncvvdeq.ne |
⊢ ( 𝜑 → 𝑋 ≠ 𝑌 ) |
8 |
|
frgrncvvdeq.xy |
⊢ ( 𝜑 → 𝑌 ∉ 𝐷 ) |
9 |
|
frgrncvvdeq.f |
⊢ ( 𝜑 → 𝐺 ∈ FriendGraph ) |
10 |
|
frgrncvvdeq.a |
⊢ 𝐴 = ( 𝑥 ∈ 𝐷 ↦ ( ℩ 𝑦 ∈ 𝑁 { 𝑥 , 𝑦 } ∈ 𝐸 ) ) |
11 |
4
|
ineq2i |
⊢ ( ( 𝐺 NeighbVtx 𝑥 ) ∩ 𝑁 ) = ( ( 𝐺 NeighbVtx 𝑥 ) ∩ ( 𝐺 NeighbVtx 𝑌 ) ) |
12 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → 𝐺 ∈ FriendGraph ) |
13 |
3
|
eleq2i |
⊢ ( 𝑥 ∈ 𝐷 ↔ 𝑥 ∈ ( 𝐺 NeighbVtx 𝑋 ) ) |
14 |
1
|
nbgrisvtx |
⊢ ( 𝑥 ∈ ( 𝐺 NeighbVtx 𝑋 ) → 𝑥 ∈ 𝑉 ) |
15 |
14
|
a1i |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐺 NeighbVtx 𝑋 ) → 𝑥 ∈ 𝑉 ) ) |
16 |
13 15
|
syl5bi |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐷 → 𝑥 ∈ 𝑉 ) ) |
17 |
16
|
imp |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → 𝑥 ∈ 𝑉 ) |
18 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → 𝑌 ∈ 𝑉 ) |
19 |
|
elnelne2 |
⊢ ( ( 𝑥 ∈ 𝐷 ∧ 𝑌 ∉ 𝐷 ) → 𝑥 ≠ 𝑌 ) |
20 |
8 19
|
sylan2 |
⊢ ( ( 𝑥 ∈ 𝐷 ∧ 𝜑 ) → 𝑥 ≠ 𝑌 ) |
21 |
20
|
ancoms |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → 𝑥 ≠ 𝑌 ) |
22 |
17 18 21
|
3jca |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( 𝑥 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑥 ≠ 𝑌 ) ) |
23 |
1 2
|
frcond3 |
⊢ ( 𝐺 ∈ FriendGraph → ( ( 𝑥 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑥 ≠ 𝑌 ) → ∃ 𝑛 ∈ 𝑉 ( ( 𝐺 NeighbVtx 𝑥 ) ∩ ( 𝐺 NeighbVtx 𝑌 ) ) = { 𝑛 } ) ) |
24 |
12 22 23
|
sylc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ∃ 𝑛 ∈ 𝑉 ( ( 𝐺 NeighbVtx 𝑥 ) ∩ ( 𝐺 NeighbVtx 𝑌 ) ) = { 𝑛 } ) |
25 |
|
vex |
⊢ 𝑛 ∈ V |
26 |
|
elinsn |
⊢ ( ( 𝑛 ∈ V ∧ ( ( 𝐺 NeighbVtx 𝑥 ) ∩ ( 𝐺 NeighbVtx 𝑌 ) ) = { 𝑛 } ) → ( 𝑛 ∈ ( 𝐺 NeighbVtx 𝑥 ) ∧ 𝑛 ∈ ( 𝐺 NeighbVtx 𝑌 ) ) ) |
27 |
25 26
|
mpan |
⊢ ( ( ( 𝐺 NeighbVtx 𝑥 ) ∩ ( 𝐺 NeighbVtx 𝑌 ) ) = { 𝑛 } → ( 𝑛 ∈ ( 𝐺 NeighbVtx 𝑥 ) ∧ 𝑛 ∈ ( 𝐺 NeighbVtx 𝑌 ) ) ) |
28 |
|
frgrusgr |
⊢ ( 𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph ) |
29 |
2
|
nbusgreledg |
⊢ ( 𝐺 ∈ USGraph → ( 𝑛 ∈ ( 𝐺 NeighbVtx 𝑥 ) ↔ { 𝑛 , 𝑥 } ∈ 𝐸 ) ) |
30 |
|
prcom |
⊢ { 𝑛 , 𝑥 } = { 𝑥 , 𝑛 } |
31 |
30
|
eleq1i |
⊢ ( { 𝑛 , 𝑥 } ∈ 𝐸 ↔ { 𝑥 , 𝑛 } ∈ 𝐸 ) |
32 |
29 31
|
bitrdi |
⊢ ( 𝐺 ∈ USGraph → ( 𝑛 ∈ ( 𝐺 NeighbVtx 𝑥 ) ↔ { 𝑥 , 𝑛 } ∈ 𝐸 ) ) |
33 |
32
|
biimpd |
⊢ ( 𝐺 ∈ USGraph → ( 𝑛 ∈ ( 𝐺 NeighbVtx 𝑥 ) → { 𝑥 , 𝑛 } ∈ 𝐸 ) ) |
34 |
9 28 33
|
3syl |
⊢ ( 𝜑 → ( 𝑛 ∈ ( 𝐺 NeighbVtx 𝑥 ) → { 𝑥 , 𝑛 } ∈ 𝐸 ) ) |
35 |
34
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( 𝑛 ∈ ( 𝐺 NeighbVtx 𝑥 ) → { 𝑥 , 𝑛 } ∈ 𝐸 ) ) |
36 |
35
|
com12 |
⊢ ( 𝑛 ∈ ( 𝐺 NeighbVtx 𝑥 ) → ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → { 𝑥 , 𝑛 } ∈ 𝐸 ) ) |
37 |
36
|
adantr |
⊢ ( ( 𝑛 ∈ ( 𝐺 NeighbVtx 𝑥 ) ∧ 𝑛 ∈ ( 𝐺 NeighbVtx 𝑌 ) ) → ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → { 𝑥 , 𝑛 } ∈ 𝐸 ) ) |
38 |
37
|
imp |
⊢ ( ( ( 𝑛 ∈ ( 𝐺 NeighbVtx 𝑥 ) ∧ 𝑛 ∈ ( 𝐺 NeighbVtx 𝑌 ) ) ∧ ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ) → { 𝑥 , 𝑛 } ∈ 𝐸 ) |
39 |
4
|
eqcomi |
⊢ ( 𝐺 NeighbVtx 𝑌 ) = 𝑁 |
40 |
39
|
eleq2i |
⊢ ( 𝑛 ∈ ( 𝐺 NeighbVtx 𝑌 ) ↔ 𝑛 ∈ 𝑁 ) |
41 |
40
|
biimpi |
⊢ ( 𝑛 ∈ ( 𝐺 NeighbVtx 𝑌 ) → 𝑛 ∈ 𝑁 ) |
42 |
41
|
adantl |
⊢ ( ( 𝑛 ∈ ( 𝐺 NeighbVtx 𝑥 ) ∧ 𝑛 ∈ ( 𝐺 NeighbVtx 𝑌 ) ) → 𝑛 ∈ 𝑁 ) |
43 |
1 2 3 4 5 6 7 8 9 10
|
frgrncvvdeqlem2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ∃! 𝑦 ∈ 𝑁 { 𝑥 , 𝑦 } ∈ 𝐸 ) |
44 |
|
preq2 |
⊢ ( 𝑦 = 𝑛 → { 𝑥 , 𝑦 } = { 𝑥 , 𝑛 } ) |
45 |
44
|
eleq1d |
⊢ ( 𝑦 = 𝑛 → ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { 𝑥 , 𝑛 } ∈ 𝐸 ) ) |
46 |
45
|
riota2 |
⊢ ( ( 𝑛 ∈ 𝑁 ∧ ∃! 𝑦 ∈ 𝑁 { 𝑥 , 𝑦 } ∈ 𝐸 ) → ( { 𝑥 , 𝑛 } ∈ 𝐸 ↔ ( ℩ 𝑦 ∈ 𝑁 { 𝑥 , 𝑦 } ∈ 𝐸 ) = 𝑛 ) ) |
47 |
42 43 46
|
syl2an |
⊢ ( ( ( 𝑛 ∈ ( 𝐺 NeighbVtx 𝑥 ) ∧ 𝑛 ∈ ( 𝐺 NeighbVtx 𝑌 ) ) ∧ ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ) → ( { 𝑥 , 𝑛 } ∈ 𝐸 ↔ ( ℩ 𝑦 ∈ 𝑁 { 𝑥 , 𝑦 } ∈ 𝐸 ) = 𝑛 ) ) |
48 |
38 47
|
mpbid |
⊢ ( ( ( 𝑛 ∈ ( 𝐺 NeighbVtx 𝑥 ) ∧ 𝑛 ∈ ( 𝐺 NeighbVtx 𝑌 ) ) ∧ ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ) → ( ℩ 𝑦 ∈ 𝑁 { 𝑥 , 𝑦 } ∈ 𝐸 ) = 𝑛 ) |
49 |
27 48
|
sylan |
⊢ ( ( ( ( 𝐺 NeighbVtx 𝑥 ) ∩ ( 𝐺 NeighbVtx 𝑌 ) ) = { 𝑛 } ∧ ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ) → ( ℩ 𝑦 ∈ 𝑁 { 𝑥 , 𝑦 } ∈ 𝐸 ) = 𝑛 ) |
50 |
49
|
eqcomd |
⊢ ( ( ( ( 𝐺 NeighbVtx 𝑥 ) ∩ ( 𝐺 NeighbVtx 𝑌 ) ) = { 𝑛 } ∧ ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ) → 𝑛 = ( ℩ 𝑦 ∈ 𝑁 { 𝑥 , 𝑦 } ∈ 𝐸 ) ) |
51 |
50
|
sneqd |
⊢ ( ( ( ( 𝐺 NeighbVtx 𝑥 ) ∩ ( 𝐺 NeighbVtx 𝑌 ) ) = { 𝑛 } ∧ ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ) → { 𝑛 } = { ( ℩ 𝑦 ∈ 𝑁 { 𝑥 , 𝑦 } ∈ 𝐸 ) } ) |
52 |
|
eqeq1 |
⊢ ( ( ( 𝐺 NeighbVtx 𝑥 ) ∩ ( 𝐺 NeighbVtx 𝑌 ) ) = { 𝑛 } → ( ( ( 𝐺 NeighbVtx 𝑥 ) ∩ ( 𝐺 NeighbVtx 𝑌 ) ) = { ( ℩ 𝑦 ∈ 𝑁 { 𝑥 , 𝑦 } ∈ 𝐸 ) } ↔ { 𝑛 } = { ( ℩ 𝑦 ∈ 𝑁 { 𝑥 , 𝑦 } ∈ 𝐸 ) } ) ) |
53 |
52
|
adantr |
⊢ ( ( ( ( 𝐺 NeighbVtx 𝑥 ) ∩ ( 𝐺 NeighbVtx 𝑌 ) ) = { 𝑛 } ∧ ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ) → ( ( ( 𝐺 NeighbVtx 𝑥 ) ∩ ( 𝐺 NeighbVtx 𝑌 ) ) = { ( ℩ 𝑦 ∈ 𝑁 { 𝑥 , 𝑦 } ∈ 𝐸 ) } ↔ { 𝑛 } = { ( ℩ 𝑦 ∈ 𝑁 { 𝑥 , 𝑦 } ∈ 𝐸 ) } ) ) |
54 |
51 53
|
mpbird |
⊢ ( ( ( ( 𝐺 NeighbVtx 𝑥 ) ∩ ( 𝐺 NeighbVtx 𝑌 ) ) = { 𝑛 } ∧ ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ) → ( ( 𝐺 NeighbVtx 𝑥 ) ∩ ( 𝐺 NeighbVtx 𝑌 ) ) = { ( ℩ 𝑦 ∈ 𝑁 { 𝑥 , 𝑦 } ∈ 𝐸 ) } ) |
55 |
54
|
ex |
⊢ ( ( ( 𝐺 NeighbVtx 𝑥 ) ∩ ( 𝐺 NeighbVtx 𝑌 ) ) = { 𝑛 } → ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( ( 𝐺 NeighbVtx 𝑥 ) ∩ ( 𝐺 NeighbVtx 𝑌 ) ) = { ( ℩ 𝑦 ∈ 𝑁 { 𝑥 , 𝑦 } ∈ 𝐸 ) } ) ) |
56 |
55
|
rexlimivw |
⊢ ( ∃ 𝑛 ∈ 𝑉 ( ( 𝐺 NeighbVtx 𝑥 ) ∩ ( 𝐺 NeighbVtx 𝑌 ) ) = { 𝑛 } → ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( ( 𝐺 NeighbVtx 𝑥 ) ∩ ( 𝐺 NeighbVtx 𝑌 ) ) = { ( ℩ 𝑦 ∈ 𝑁 { 𝑥 , 𝑦 } ∈ 𝐸 ) } ) ) |
57 |
24 56
|
mpcom |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( ( 𝐺 NeighbVtx 𝑥 ) ∩ ( 𝐺 NeighbVtx 𝑌 ) ) = { ( ℩ 𝑦 ∈ 𝑁 { 𝑥 , 𝑦 } ∈ 𝐸 ) } ) |
58 |
11 57
|
eqtr2id |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → { ( ℩ 𝑦 ∈ 𝑁 { 𝑥 , 𝑦 } ∈ 𝐸 ) } = ( ( 𝐺 NeighbVtx 𝑥 ) ∩ 𝑁 ) ) |