| Step |
Hyp |
Ref |
Expression |
| 1 |
|
frgrncvvdeq.v1 |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
| 2 |
|
frgrncvvdeq.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
| 3 |
|
frgrncvvdeq.nx |
⊢ 𝐷 = ( 𝐺 NeighbVtx 𝑋 ) |
| 4 |
|
frgrncvvdeq.ny |
⊢ 𝑁 = ( 𝐺 NeighbVtx 𝑌 ) |
| 5 |
|
frgrncvvdeq.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
| 6 |
|
frgrncvvdeq.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
| 7 |
|
frgrncvvdeq.ne |
⊢ ( 𝜑 → 𝑋 ≠ 𝑌 ) |
| 8 |
|
frgrncvvdeq.xy |
⊢ ( 𝜑 → 𝑌 ∉ 𝐷 ) |
| 9 |
|
frgrncvvdeq.f |
⊢ ( 𝜑 → 𝐺 ∈ FriendGraph ) |
| 10 |
|
frgrncvvdeq.a |
⊢ 𝐴 = ( 𝑥 ∈ 𝐷 ↦ ( ℩ 𝑦 ∈ 𝑁 { 𝑥 , 𝑦 } ∈ 𝐸 ) ) |
| 11 |
1 2 3 4 5 6 7 8 9 10
|
frgrncvvdeqlem2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ∃! 𝑦 ∈ 𝑁 { 𝑥 , 𝑦 } ∈ 𝐸 ) |
| 12 |
|
riotacl |
⊢ ( ∃! 𝑦 ∈ 𝑁 { 𝑥 , 𝑦 } ∈ 𝐸 → ( ℩ 𝑦 ∈ 𝑁 { 𝑥 , 𝑦 } ∈ 𝐸 ) ∈ 𝑁 ) |
| 13 |
11 12
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( ℩ 𝑦 ∈ 𝑁 { 𝑥 , 𝑦 } ∈ 𝐸 ) ∈ 𝑁 ) |
| 14 |
13 10
|
fmptd |
⊢ ( 𝜑 → 𝐴 : 𝐷 ⟶ 𝑁 ) |