Metamath Proof Explorer


Theorem frgrncvvdeqlem6

Description: Lemma 6 for frgrncvvdeq . (Contributed by Alexander van der Vekens, 23-Dec-2017) (Revised by AV, 10-May-2021) (Proof shortened by AV, 30-Dec-2021)

Ref Expression
Hypotheses frgrncvvdeq.v1 𝑉 = ( Vtx ‘ 𝐺 )
frgrncvvdeq.e 𝐸 = ( Edg ‘ 𝐺 )
frgrncvvdeq.nx 𝐷 = ( 𝐺 NeighbVtx 𝑋 )
frgrncvvdeq.ny 𝑁 = ( 𝐺 NeighbVtx 𝑌 )
frgrncvvdeq.x ( 𝜑𝑋𝑉 )
frgrncvvdeq.y ( 𝜑𝑌𝑉 )
frgrncvvdeq.ne ( 𝜑𝑋𝑌 )
frgrncvvdeq.xy ( 𝜑𝑌𝐷 )
frgrncvvdeq.f ( 𝜑𝐺 ∈ FriendGraph )
frgrncvvdeq.a 𝐴 = ( 𝑥𝐷 ↦ ( 𝑦𝑁 { 𝑥 , 𝑦 } ∈ 𝐸 ) )
Assertion frgrncvvdeqlem6 ( ( 𝜑𝑥𝐷 ) → { 𝑥 , ( 𝐴𝑥 ) } ∈ 𝐸 )

Proof

Step Hyp Ref Expression
1 frgrncvvdeq.v1 𝑉 = ( Vtx ‘ 𝐺 )
2 frgrncvvdeq.e 𝐸 = ( Edg ‘ 𝐺 )
3 frgrncvvdeq.nx 𝐷 = ( 𝐺 NeighbVtx 𝑋 )
4 frgrncvvdeq.ny 𝑁 = ( 𝐺 NeighbVtx 𝑌 )
5 frgrncvvdeq.x ( 𝜑𝑋𝑉 )
6 frgrncvvdeq.y ( 𝜑𝑌𝑉 )
7 frgrncvvdeq.ne ( 𝜑𝑋𝑌 )
8 frgrncvvdeq.xy ( 𝜑𝑌𝐷 )
9 frgrncvvdeq.f ( 𝜑𝐺 ∈ FriendGraph )
10 frgrncvvdeq.a 𝐴 = ( 𝑥𝐷 ↦ ( 𝑦𝑁 { 𝑥 , 𝑦 } ∈ 𝐸 ) )
11 1 2 3 4 5 6 7 8 9 10 frgrncvvdeqlem5 ( ( 𝜑𝑥𝐷 ) → { ( 𝐴𝑥 ) } = ( ( 𝐺 NeighbVtx 𝑥 ) ∩ 𝑁 ) )
12 fvex ( 𝐴𝑥 ) ∈ V
13 elinsn ( ( ( 𝐴𝑥 ) ∈ V ∧ ( ( 𝐺 NeighbVtx 𝑥 ) ∩ 𝑁 ) = { ( 𝐴𝑥 ) } ) → ( ( 𝐴𝑥 ) ∈ ( 𝐺 NeighbVtx 𝑥 ) ∧ ( 𝐴𝑥 ) ∈ 𝑁 ) )
14 12 13 mpan ( ( ( 𝐺 NeighbVtx 𝑥 ) ∩ 𝑁 ) = { ( 𝐴𝑥 ) } → ( ( 𝐴𝑥 ) ∈ ( 𝐺 NeighbVtx 𝑥 ) ∧ ( 𝐴𝑥 ) ∈ 𝑁 ) )
15 frgrusgr ( 𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph )
16 2 nbusgreledg ( 𝐺 ∈ USGraph → ( ( 𝐴𝑥 ) ∈ ( 𝐺 NeighbVtx 𝑥 ) ↔ { ( 𝐴𝑥 ) , 𝑥 } ∈ 𝐸 ) )
17 prcom { ( 𝐴𝑥 ) , 𝑥 } = { 𝑥 , ( 𝐴𝑥 ) }
18 17 eleq1i ( { ( 𝐴𝑥 ) , 𝑥 } ∈ 𝐸 ↔ { 𝑥 , ( 𝐴𝑥 ) } ∈ 𝐸 )
19 16 18 bitrdi ( 𝐺 ∈ USGraph → ( ( 𝐴𝑥 ) ∈ ( 𝐺 NeighbVtx 𝑥 ) ↔ { 𝑥 , ( 𝐴𝑥 ) } ∈ 𝐸 ) )
20 19 biimpd ( 𝐺 ∈ USGraph → ( ( 𝐴𝑥 ) ∈ ( 𝐺 NeighbVtx 𝑥 ) → { 𝑥 , ( 𝐴𝑥 ) } ∈ 𝐸 ) )
21 9 15 20 3syl ( 𝜑 → ( ( 𝐴𝑥 ) ∈ ( 𝐺 NeighbVtx 𝑥 ) → { 𝑥 , ( 𝐴𝑥 ) } ∈ 𝐸 ) )
22 21 adantr ( ( 𝜑𝑥𝐷 ) → ( ( 𝐴𝑥 ) ∈ ( 𝐺 NeighbVtx 𝑥 ) → { 𝑥 , ( 𝐴𝑥 ) } ∈ 𝐸 ) )
23 22 com12 ( ( 𝐴𝑥 ) ∈ ( 𝐺 NeighbVtx 𝑥 ) → ( ( 𝜑𝑥𝐷 ) → { 𝑥 , ( 𝐴𝑥 ) } ∈ 𝐸 ) )
24 23 adantr ( ( ( 𝐴𝑥 ) ∈ ( 𝐺 NeighbVtx 𝑥 ) ∧ ( 𝐴𝑥 ) ∈ 𝑁 ) → ( ( 𝜑𝑥𝐷 ) → { 𝑥 , ( 𝐴𝑥 ) } ∈ 𝐸 ) )
25 14 24 syl ( ( ( 𝐺 NeighbVtx 𝑥 ) ∩ 𝑁 ) = { ( 𝐴𝑥 ) } → ( ( 𝜑𝑥𝐷 ) → { 𝑥 , ( 𝐴𝑥 ) } ∈ 𝐸 ) )
26 25 eqcoms ( { ( 𝐴𝑥 ) } = ( ( 𝐺 NeighbVtx 𝑥 ) ∩ 𝑁 ) → ( ( 𝜑𝑥𝐷 ) → { 𝑥 , ( 𝐴𝑥 ) } ∈ 𝐸 ) )
27 11 26 mpcom ( ( 𝜑𝑥𝐷 ) → { 𝑥 , ( 𝐴𝑥 ) } ∈ 𝐸 )