Step |
Hyp |
Ref |
Expression |
1 |
|
frgrncvvdeq.v1 |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
frgrncvvdeq.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
3 |
|
frgrncvvdeq.nx |
⊢ 𝐷 = ( 𝐺 NeighbVtx 𝑋 ) |
4 |
|
frgrncvvdeq.ny |
⊢ 𝑁 = ( 𝐺 NeighbVtx 𝑌 ) |
5 |
|
frgrncvvdeq.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
6 |
|
frgrncvvdeq.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
7 |
|
frgrncvvdeq.ne |
⊢ ( 𝜑 → 𝑋 ≠ 𝑌 ) |
8 |
|
frgrncvvdeq.xy |
⊢ ( 𝜑 → 𝑌 ∉ 𝐷 ) |
9 |
|
frgrncvvdeq.f |
⊢ ( 𝜑 → 𝐺 ∈ FriendGraph ) |
10 |
|
frgrncvvdeq.a |
⊢ 𝐴 = ( 𝑥 ∈ 𝐷 ↦ ( ℩ 𝑦 ∈ 𝑁 { 𝑥 , 𝑦 } ∈ 𝐸 ) ) |
11 |
1 2 3 4 5 6 7 8 9 10
|
frgrncvvdeqlem5 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → { ( 𝐴 ‘ 𝑥 ) } = ( ( 𝐺 NeighbVtx 𝑥 ) ∩ 𝑁 ) ) |
12 |
|
fvex |
⊢ ( 𝐴 ‘ 𝑥 ) ∈ V |
13 |
|
elinsn |
⊢ ( ( ( 𝐴 ‘ 𝑥 ) ∈ V ∧ ( ( 𝐺 NeighbVtx 𝑥 ) ∩ 𝑁 ) = { ( 𝐴 ‘ 𝑥 ) } ) → ( ( 𝐴 ‘ 𝑥 ) ∈ ( 𝐺 NeighbVtx 𝑥 ) ∧ ( 𝐴 ‘ 𝑥 ) ∈ 𝑁 ) ) |
14 |
12 13
|
mpan |
⊢ ( ( ( 𝐺 NeighbVtx 𝑥 ) ∩ 𝑁 ) = { ( 𝐴 ‘ 𝑥 ) } → ( ( 𝐴 ‘ 𝑥 ) ∈ ( 𝐺 NeighbVtx 𝑥 ) ∧ ( 𝐴 ‘ 𝑥 ) ∈ 𝑁 ) ) |
15 |
|
frgrusgr |
⊢ ( 𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph ) |
16 |
2
|
nbusgreledg |
⊢ ( 𝐺 ∈ USGraph → ( ( 𝐴 ‘ 𝑥 ) ∈ ( 𝐺 NeighbVtx 𝑥 ) ↔ { ( 𝐴 ‘ 𝑥 ) , 𝑥 } ∈ 𝐸 ) ) |
17 |
|
prcom |
⊢ { ( 𝐴 ‘ 𝑥 ) , 𝑥 } = { 𝑥 , ( 𝐴 ‘ 𝑥 ) } |
18 |
17
|
eleq1i |
⊢ ( { ( 𝐴 ‘ 𝑥 ) , 𝑥 } ∈ 𝐸 ↔ { 𝑥 , ( 𝐴 ‘ 𝑥 ) } ∈ 𝐸 ) |
19 |
16 18
|
bitrdi |
⊢ ( 𝐺 ∈ USGraph → ( ( 𝐴 ‘ 𝑥 ) ∈ ( 𝐺 NeighbVtx 𝑥 ) ↔ { 𝑥 , ( 𝐴 ‘ 𝑥 ) } ∈ 𝐸 ) ) |
20 |
19
|
biimpd |
⊢ ( 𝐺 ∈ USGraph → ( ( 𝐴 ‘ 𝑥 ) ∈ ( 𝐺 NeighbVtx 𝑥 ) → { 𝑥 , ( 𝐴 ‘ 𝑥 ) } ∈ 𝐸 ) ) |
21 |
9 15 20
|
3syl |
⊢ ( 𝜑 → ( ( 𝐴 ‘ 𝑥 ) ∈ ( 𝐺 NeighbVtx 𝑥 ) → { 𝑥 , ( 𝐴 ‘ 𝑥 ) } ∈ 𝐸 ) ) |
22 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( ( 𝐴 ‘ 𝑥 ) ∈ ( 𝐺 NeighbVtx 𝑥 ) → { 𝑥 , ( 𝐴 ‘ 𝑥 ) } ∈ 𝐸 ) ) |
23 |
22
|
com12 |
⊢ ( ( 𝐴 ‘ 𝑥 ) ∈ ( 𝐺 NeighbVtx 𝑥 ) → ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → { 𝑥 , ( 𝐴 ‘ 𝑥 ) } ∈ 𝐸 ) ) |
24 |
23
|
adantr |
⊢ ( ( ( 𝐴 ‘ 𝑥 ) ∈ ( 𝐺 NeighbVtx 𝑥 ) ∧ ( 𝐴 ‘ 𝑥 ) ∈ 𝑁 ) → ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → { 𝑥 , ( 𝐴 ‘ 𝑥 ) } ∈ 𝐸 ) ) |
25 |
14 24
|
syl |
⊢ ( ( ( 𝐺 NeighbVtx 𝑥 ) ∩ 𝑁 ) = { ( 𝐴 ‘ 𝑥 ) } → ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → { 𝑥 , ( 𝐴 ‘ 𝑥 ) } ∈ 𝐸 ) ) |
26 |
25
|
eqcoms |
⊢ ( { ( 𝐴 ‘ 𝑥 ) } = ( ( 𝐺 NeighbVtx 𝑥 ) ∩ 𝑁 ) → ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → { 𝑥 , ( 𝐴 ‘ 𝑥 ) } ∈ 𝐸 ) ) |
27 |
11 26
|
mpcom |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → { 𝑥 , ( 𝐴 ‘ 𝑥 ) } ∈ 𝐸 ) |