| Step |
Hyp |
Ref |
Expression |
| 1 |
|
frgrncvvdeq.v1 |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
| 2 |
|
frgrncvvdeq.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
| 3 |
|
frgrncvvdeq.nx |
⊢ 𝐷 = ( 𝐺 NeighbVtx 𝑋 ) |
| 4 |
|
frgrncvvdeq.ny |
⊢ 𝑁 = ( 𝐺 NeighbVtx 𝑌 ) |
| 5 |
|
frgrncvvdeq.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
| 6 |
|
frgrncvvdeq.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
| 7 |
|
frgrncvvdeq.ne |
⊢ ( 𝜑 → 𝑋 ≠ 𝑌 ) |
| 8 |
|
frgrncvvdeq.xy |
⊢ ( 𝜑 → 𝑌 ∉ 𝐷 ) |
| 9 |
|
frgrncvvdeq.f |
⊢ ( 𝜑 → 𝐺 ∈ FriendGraph ) |
| 10 |
|
frgrncvvdeq.a |
⊢ 𝐴 = ( 𝑥 ∈ 𝐷 ↦ ( ℩ 𝑦 ∈ 𝑁 { 𝑥 , 𝑦 } ∈ 𝐸 ) ) |
| 11 |
1 2 3 4 5 6 7 8 9 10
|
frgrncvvdeqlem5 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → { ( 𝐴 ‘ 𝑥 ) } = ( ( 𝐺 NeighbVtx 𝑥 ) ∩ 𝑁 ) ) |
| 12 |
|
fvex |
⊢ ( 𝐴 ‘ 𝑥 ) ∈ V |
| 13 |
|
elinsn |
⊢ ( ( ( 𝐴 ‘ 𝑥 ) ∈ V ∧ ( ( 𝐺 NeighbVtx 𝑥 ) ∩ 𝑁 ) = { ( 𝐴 ‘ 𝑥 ) } ) → ( ( 𝐴 ‘ 𝑥 ) ∈ ( 𝐺 NeighbVtx 𝑥 ) ∧ ( 𝐴 ‘ 𝑥 ) ∈ 𝑁 ) ) |
| 14 |
12 13
|
mpan |
⊢ ( ( ( 𝐺 NeighbVtx 𝑥 ) ∩ 𝑁 ) = { ( 𝐴 ‘ 𝑥 ) } → ( ( 𝐴 ‘ 𝑥 ) ∈ ( 𝐺 NeighbVtx 𝑥 ) ∧ ( 𝐴 ‘ 𝑥 ) ∈ 𝑁 ) ) |
| 15 |
|
frgrusgr |
⊢ ( 𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph ) |
| 16 |
2
|
nbusgreledg |
⊢ ( 𝐺 ∈ USGraph → ( ( 𝐴 ‘ 𝑥 ) ∈ ( 𝐺 NeighbVtx 𝑥 ) ↔ { ( 𝐴 ‘ 𝑥 ) , 𝑥 } ∈ 𝐸 ) ) |
| 17 |
|
prcom |
⊢ { ( 𝐴 ‘ 𝑥 ) , 𝑥 } = { 𝑥 , ( 𝐴 ‘ 𝑥 ) } |
| 18 |
17
|
eleq1i |
⊢ ( { ( 𝐴 ‘ 𝑥 ) , 𝑥 } ∈ 𝐸 ↔ { 𝑥 , ( 𝐴 ‘ 𝑥 ) } ∈ 𝐸 ) |
| 19 |
16 18
|
bitrdi |
⊢ ( 𝐺 ∈ USGraph → ( ( 𝐴 ‘ 𝑥 ) ∈ ( 𝐺 NeighbVtx 𝑥 ) ↔ { 𝑥 , ( 𝐴 ‘ 𝑥 ) } ∈ 𝐸 ) ) |
| 20 |
19
|
biimpd |
⊢ ( 𝐺 ∈ USGraph → ( ( 𝐴 ‘ 𝑥 ) ∈ ( 𝐺 NeighbVtx 𝑥 ) → { 𝑥 , ( 𝐴 ‘ 𝑥 ) } ∈ 𝐸 ) ) |
| 21 |
9 15 20
|
3syl |
⊢ ( 𝜑 → ( ( 𝐴 ‘ 𝑥 ) ∈ ( 𝐺 NeighbVtx 𝑥 ) → { 𝑥 , ( 𝐴 ‘ 𝑥 ) } ∈ 𝐸 ) ) |
| 22 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( ( 𝐴 ‘ 𝑥 ) ∈ ( 𝐺 NeighbVtx 𝑥 ) → { 𝑥 , ( 𝐴 ‘ 𝑥 ) } ∈ 𝐸 ) ) |
| 23 |
22
|
com12 |
⊢ ( ( 𝐴 ‘ 𝑥 ) ∈ ( 𝐺 NeighbVtx 𝑥 ) → ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → { 𝑥 , ( 𝐴 ‘ 𝑥 ) } ∈ 𝐸 ) ) |
| 24 |
23
|
adantr |
⊢ ( ( ( 𝐴 ‘ 𝑥 ) ∈ ( 𝐺 NeighbVtx 𝑥 ) ∧ ( 𝐴 ‘ 𝑥 ) ∈ 𝑁 ) → ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → { 𝑥 , ( 𝐴 ‘ 𝑥 ) } ∈ 𝐸 ) ) |
| 25 |
14 24
|
syl |
⊢ ( ( ( 𝐺 NeighbVtx 𝑥 ) ∩ 𝑁 ) = { ( 𝐴 ‘ 𝑥 ) } → ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → { 𝑥 , ( 𝐴 ‘ 𝑥 ) } ∈ 𝐸 ) ) |
| 26 |
25
|
eqcoms |
⊢ ( { ( 𝐴 ‘ 𝑥 ) } = ( ( 𝐺 NeighbVtx 𝑥 ) ∩ 𝑁 ) → ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → { 𝑥 , ( 𝐴 ‘ 𝑥 ) } ∈ 𝐸 ) ) |
| 27 |
11 26
|
mpcom |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → { 𝑥 , ( 𝐴 ‘ 𝑥 ) } ∈ 𝐸 ) |