Step |
Hyp |
Ref |
Expression |
1 |
|
frgrncvvdeq.v1 |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
frgrncvvdeq.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
3 |
|
frgrncvvdeq.nx |
⊢ 𝐷 = ( 𝐺 NeighbVtx 𝑋 ) |
4 |
|
frgrncvvdeq.ny |
⊢ 𝑁 = ( 𝐺 NeighbVtx 𝑌 ) |
5 |
|
frgrncvvdeq.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
6 |
|
frgrncvvdeq.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
7 |
|
frgrncvvdeq.ne |
⊢ ( 𝜑 → 𝑋 ≠ 𝑌 ) |
8 |
|
frgrncvvdeq.xy |
⊢ ( 𝜑 → 𝑌 ∉ 𝐷 ) |
9 |
|
frgrncvvdeq.f |
⊢ ( 𝜑 → 𝐺 ∈ FriendGraph ) |
10 |
|
frgrncvvdeq.a |
⊢ 𝐴 = ( 𝑥 ∈ 𝐷 ↦ ( ℩ 𝑦 ∈ 𝑁 { 𝑥 , 𝑦 } ∈ 𝐸 ) ) |
11 |
1 2 3 4 5 6 7 8 9 10
|
frgrncvvdeqlem5 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → { ( 𝐴 ‘ 𝑥 ) } = ( ( 𝐺 NeighbVtx 𝑥 ) ∩ 𝑁 ) ) |
12 |
|
fvex |
⊢ ( 𝐴 ‘ 𝑥 ) ∈ V |
13 |
12
|
snid |
⊢ ( 𝐴 ‘ 𝑥 ) ∈ { ( 𝐴 ‘ 𝑥 ) } |
14 |
|
eleq2 |
⊢ ( { ( 𝐴 ‘ 𝑥 ) } = ( ( 𝐺 NeighbVtx 𝑥 ) ∩ 𝑁 ) → ( ( 𝐴 ‘ 𝑥 ) ∈ { ( 𝐴 ‘ 𝑥 ) } ↔ ( 𝐴 ‘ 𝑥 ) ∈ ( ( 𝐺 NeighbVtx 𝑥 ) ∩ 𝑁 ) ) ) |
15 |
14
|
biimpa |
⊢ ( ( { ( 𝐴 ‘ 𝑥 ) } = ( ( 𝐺 NeighbVtx 𝑥 ) ∩ 𝑁 ) ∧ ( 𝐴 ‘ 𝑥 ) ∈ { ( 𝐴 ‘ 𝑥 ) } ) → ( 𝐴 ‘ 𝑥 ) ∈ ( ( 𝐺 NeighbVtx 𝑥 ) ∩ 𝑁 ) ) |
16 |
|
elin |
⊢ ( ( 𝐴 ‘ 𝑥 ) ∈ ( ( 𝐺 NeighbVtx 𝑥 ) ∩ 𝑁 ) ↔ ( ( 𝐴 ‘ 𝑥 ) ∈ ( 𝐺 NeighbVtx 𝑥 ) ∧ ( 𝐴 ‘ 𝑥 ) ∈ 𝑁 ) ) |
17 |
1 2 3 4 5 6 7 8 9 10
|
frgrncvvdeqlem1 |
⊢ ( 𝜑 → 𝑋 ∉ 𝑁 ) |
18 |
|
df-nel |
⊢ ( 𝑋 ∉ 𝑁 ↔ ¬ 𝑋 ∈ 𝑁 ) |
19 |
|
nelelne |
⊢ ( ¬ 𝑋 ∈ 𝑁 → ( ( 𝐴 ‘ 𝑥 ) ∈ 𝑁 → ( 𝐴 ‘ 𝑥 ) ≠ 𝑋 ) ) |
20 |
18 19
|
sylbi |
⊢ ( 𝑋 ∉ 𝑁 → ( ( 𝐴 ‘ 𝑥 ) ∈ 𝑁 → ( 𝐴 ‘ 𝑥 ) ≠ 𝑋 ) ) |
21 |
17 20
|
syl |
⊢ ( 𝜑 → ( ( 𝐴 ‘ 𝑥 ) ∈ 𝑁 → ( 𝐴 ‘ 𝑥 ) ≠ 𝑋 ) ) |
22 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( ( 𝐴 ‘ 𝑥 ) ∈ 𝑁 → ( 𝐴 ‘ 𝑥 ) ≠ 𝑋 ) ) |
23 |
22
|
com12 |
⊢ ( ( 𝐴 ‘ 𝑥 ) ∈ 𝑁 → ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( 𝐴 ‘ 𝑥 ) ≠ 𝑋 ) ) |
24 |
16 23
|
simplbiim |
⊢ ( ( 𝐴 ‘ 𝑥 ) ∈ ( ( 𝐺 NeighbVtx 𝑥 ) ∩ 𝑁 ) → ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( 𝐴 ‘ 𝑥 ) ≠ 𝑋 ) ) |
25 |
15 24
|
syl |
⊢ ( ( { ( 𝐴 ‘ 𝑥 ) } = ( ( 𝐺 NeighbVtx 𝑥 ) ∩ 𝑁 ) ∧ ( 𝐴 ‘ 𝑥 ) ∈ { ( 𝐴 ‘ 𝑥 ) } ) → ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( 𝐴 ‘ 𝑥 ) ≠ 𝑋 ) ) |
26 |
13 25
|
mpan2 |
⊢ ( { ( 𝐴 ‘ 𝑥 ) } = ( ( 𝐺 NeighbVtx 𝑥 ) ∩ 𝑁 ) → ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( 𝐴 ‘ 𝑥 ) ≠ 𝑋 ) ) |
27 |
11 26
|
mpcom |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( 𝐴 ‘ 𝑥 ) ≠ 𝑋 ) |
28 |
27
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐷 ( 𝐴 ‘ 𝑥 ) ≠ 𝑋 ) |