Metamath Proof Explorer


Theorem frgrncvvdeqlem7

Description: Lemma 7 for frgrncvvdeq . This corresponds to statement 1 in Huneke p. 1: "This common neighbor cannot be x, as x and y are not adjacent.". This is only an observation, which is not required to proof the friendship theorem. (Contributed by Alexander van der Vekens, 23-Dec-2017) (Revised by AV, 10-May-2021)

Ref Expression
Hypotheses frgrncvvdeq.v1 𝑉 = ( Vtx ‘ 𝐺 )
frgrncvvdeq.e 𝐸 = ( Edg ‘ 𝐺 )
frgrncvvdeq.nx 𝐷 = ( 𝐺 NeighbVtx 𝑋 )
frgrncvvdeq.ny 𝑁 = ( 𝐺 NeighbVtx 𝑌 )
frgrncvvdeq.x ( 𝜑𝑋𝑉 )
frgrncvvdeq.y ( 𝜑𝑌𝑉 )
frgrncvvdeq.ne ( 𝜑𝑋𝑌 )
frgrncvvdeq.xy ( 𝜑𝑌𝐷 )
frgrncvvdeq.f ( 𝜑𝐺 ∈ FriendGraph )
frgrncvvdeq.a 𝐴 = ( 𝑥𝐷 ↦ ( 𝑦𝑁 { 𝑥 , 𝑦 } ∈ 𝐸 ) )
Assertion frgrncvvdeqlem7 ( 𝜑 → ∀ 𝑥𝐷 ( 𝐴𝑥 ) ≠ 𝑋 )

Proof

Step Hyp Ref Expression
1 frgrncvvdeq.v1 𝑉 = ( Vtx ‘ 𝐺 )
2 frgrncvvdeq.e 𝐸 = ( Edg ‘ 𝐺 )
3 frgrncvvdeq.nx 𝐷 = ( 𝐺 NeighbVtx 𝑋 )
4 frgrncvvdeq.ny 𝑁 = ( 𝐺 NeighbVtx 𝑌 )
5 frgrncvvdeq.x ( 𝜑𝑋𝑉 )
6 frgrncvvdeq.y ( 𝜑𝑌𝑉 )
7 frgrncvvdeq.ne ( 𝜑𝑋𝑌 )
8 frgrncvvdeq.xy ( 𝜑𝑌𝐷 )
9 frgrncvvdeq.f ( 𝜑𝐺 ∈ FriendGraph )
10 frgrncvvdeq.a 𝐴 = ( 𝑥𝐷 ↦ ( 𝑦𝑁 { 𝑥 , 𝑦 } ∈ 𝐸 ) )
11 1 2 3 4 5 6 7 8 9 10 frgrncvvdeqlem5 ( ( 𝜑𝑥𝐷 ) → { ( 𝐴𝑥 ) } = ( ( 𝐺 NeighbVtx 𝑥 ) ∩ 𝑁 ) )
12 fvex ( 𝐴𝑥 ) ∈ V
13 12 snid ( 𝐴𝑥 ) ∈ { ( 𝐴𝑥 ) }
14 eleq2 ( { ( 𝐴𝑥 ) } = ( ( 𝐺 NeighbVtx 𝑥 ) ∩ 𝑁 ) → ( ( 𝐴𝑥 ) ∈ { ( 𝐴𝑥 ) } ↔ ( 𝐴𝑥 ) ∈ ( ( 𝐺 NeighbVtx 𝑥 ) ∩ 𝑁 ) ) )
15 14 biimpa ( ( { ( 𝐴𝑥 ) } = ( ( 𝐺 NeighbVtx 𝑥 ) ∩ 𝑁 ) ∧ ( 𝐴𝑥 ) ∈ { ( 𝐴𝑥 ) } ) → ( 𝐴𝑥 ) ∈ ( ( 𝐺 NeighbVtx 𝑥 ) ∩ 𝑁 ) )
16 elin ( ( 𝐴𝑥 ) ∈ ( ( 𝐺 NeighbVtx 𝑥 ) ∩ 𝑁 ) ↔ ( ( 𝐴𝑥 ) ∈ ( 𝐺 NeighbVtx 𝑥 ) ∧ ( 𝐴𝑥 ) ∈ 𝑁 ) )
17 1 2 3 4 5 6 7 8 9 10 frgrncvvdeqlem1 ( 𝜑𝑋𝑁 )
18 df-nel ( 𝑋𝑁 ↔ ¬ 𝑋𝑁 )
19 nelelne ( ¬ 𝑋𝑁 → ( ( 𝐴𝑥 ) ∈ 𝑁 → ( 𝐴𝑥 ) ≠ 𝑋 ) )
20 18 19 sylbi ( 𝑋𝑁 → ( ( 𝐴𝑥 ) ∈ 𝑁 → ( 𝐴𝑥 ) ≠ 𝑋 ) )
21 17 20 syl ( 𝜑 → ( ( 𝐴𝑥 ) ∈ 𝑁 → ( 𝐴𝑥 ) ≠ 𝑋 ) )
22 21 adantr ( ( 𝜑𝑥𝐷 ) → ( ( 𝐴𝑥 ) ∈ 𝑁 → ( 𝐴𝑥 ) ≠ 𝑋 ) )
23 22 com12 ( ( 𝐴𝑥 ) ∈ 𝑁 → ( ( 𝜑𝑥𝐷 ) → ( 𝐴𝑥 ) ≠ 𝑋 ) )
24 16 23 simplbiim ( ( 𝐴𝑥 ) ∈ ( ( 𝐺 NeighbVtx 𝑥 ) ∩ 𝑁 ) → ( ( 𝜑𝑥𝐷 ) → ( 𝐴𝑥 ) ≠ 𝑋 ) )
25 15 24 syl ( ( { ( 𝐴𝑥 ) } = ( ( 𝐺 NeighbVtx 𝑥 ) ∩ 𝑁 ) ∧ ( 𝐴𝑥 ) ∈ { ( 𝐴𝑥 ) } ) → ( ( 𝜑𝑥𝐷 ) → ( 𝐴𝑥 ) ≠ 𝑋 ) )
26 13 25 mpan2 ( { ( 𝐴𝑥 ) } = ( ( 𝐺 NeighbVtx 𝑥 ) ∩ 𝑁 ) → ( ( 𝜑𝑥𝐷 ) → ( 𝐴𝑥 ) ≠ 𝑋 ) )
27 11 26 mpcom ( ( 𝜑𝑥𝐷 ) → ( 𝐴𝑥 ) ≠ 𝑋 )
28 27 ralrimiva ( 𝜑 → ∀ 𝑥𝐷 ( 𝐴𝑥 ) ≠ 𝑋 )