Step |
Hyp |
Ref |
Expression |
1 |
|
frgrncvvdeq.v1 |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
frgrncvvdeq.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
3 |
|
frgrncvvdeq.nx |
⊢ 𝐷 = ( 𝐺 NeighbVtx 𝑋 ) |
4 |
|
frgrncvvdeq.ny |
⊢ 𝑁 = ( 𝐺 NeighbVtx 𝑌 ) |
5 |
|
frgrncvvdeq.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
6 |
|
frgrncvvdeq.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
7 |
|
frgrncvvdeq.ne |
⊢ ( 𝜑 → 𝑋 ≠ 𝑌 ) |
8 |
|
frgrncvvdeq.xy |
⊢ ( 𝜑 → 𝑌 ∉ 𝐷 ) |
9 |
|
frgrncvvdeq.f |
⊢ ( 𝜑 → 𝐺 ∈ FriendGraph ) |
10 |
|
frgrncvvdeq.a |
⊢ 𝐴 = ( 𝑥 ∈ 𝐷 ↦ ( ℩ 𝑦 ∈ 𝑁 { 𝑥 , 𝑦 } ∈ 𝐸 ) ) |
11 |
1 2 3 4 5 6 7 8 9 10
|
frgrncvvdeqlem4 |
⊢ ( 𝜑 → 𝐴 : 𝐷 ⟶ 𝑁 ) |
12 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐴 : 𝐷 ⟶ 𝑁 ) → 𝐴 : 𝐷 ⟶ 𝑁 ) |
13 |
|
ffvelrn |
⊢ ( ( 𝐴 : 𝐷 ⟶ 𝑁 ∧ 𝑢 ∈ 𝐷 ) → ( 𝐴 ‘ 𝑢 ) ∈ 𝑁 ) |
14 |
13
|
ad2ant2lr |
⊢ ( ( ( 𝜑 ∧ 𝐴 : 𝐷 ⟶ 𝑁 ) ∧ ( 𝑢 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) → ( 𝐴 ‘ 𝑢 ) ∈ 𝑁 ) |
15 |
14
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 : 𝐷 ⟶ 𝑁 ) ∧ ( 𝑢 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) ∧ ( 𝐴 ‘ 𝑢 ) = ( 𝐴 ‘ 𝑤 ) ) → ( 𝐴 ‘ 𝑢 ) ∈ 𝑁 ) |
16 |
1 2 3 4 5 6 7 8 9 10
|
frgrncvvdeqlem1 |
⊢ ( 𝜑 → 𝑋 ∉ 𝑁 ) |
17 |
|
preq1 |
⊢ ( 𝑥 = 𝑢 → { 𝑥 , 𝑦 } = { 𝑢 , 𝑦 } ) |
18 |
17
|
eleq1d |
⊢ ( 𝑥 = 𝑢 → ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { 𝑢 , 𝑦 } ∈ 𝐸 ) ) |
19 |
18
|
riotabidv |
⊢ ( 𝑥 = 𝑢 → ( ℩ 𝑦 ∈ 𝑁 { 𝑥 , 𝑦 } ∈ 𝐸 ) = ( ℩ 𝑦 ∈ 𝑁 { 𝑢 , 𝑦 } ∈ 𝐸 ) ) |
20 |
19
|
cbvmptv |
⊢ ( 𝑥 ∈ 𝐷 ↦ ( ℩ 𝑦 ∈ 𝑁 { 𝑥 , 𝑦 } ∈ 𝐸 ) ) = ( 𝑢 ∈ 𝐷 ↦ ( ℩ 𝑦 ∈ 𝑁 { 𝑢 , 𝑦 } ∈ 𝐸 ) ) |
21 |
10 20
|
eqtri |
⊢ 𝐴 = ( 𝑢 ∈ 𝐷 ↦ ( ℩ 𝑦 ∈ 𝑁 { 𝑢 , 𝑦 } ∈ 𝐸 ) ) |
22 |
1 2 3 4 5 6 7 8 9 21
|
frgrncvvdeqlem6 |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝐷 ) → { 𝑢 , ( 𝐴 ‘ 𝑢 ) } ∈ 𝐸 ) |
23 |
|
preq1 |
⊢ ( 𝑥 = 𝑤 → { 𝑥 , 𝑦 } = { 𝑤 , 𝑦 } ) |
24 |
23
|
eleq1d |
⊢ ( 𝑥 = 𝑤 → ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { 𝑤 , 𝑦 } ∈ 𝐸 ) ) |
25 |
24
|
riotabidv |
⊢ ( 𝑥 = 𝑤 → ( ℩ 𝑦 ∈ 𝑁 { 𝑥 , 𝑦 } ∈ 𝐸 ) = ( ℩ 𝑦 ∈ 𝑁 { 𝑤 , 𝑦 } ∈ 𝐸 ) ) |
26 |
25
|
cbvmptv |
⊢ ( 𝑥 ∈ 𝐷 ↦ ( ℩ 𝑦 ∈ 𝑁 { 𝑥 , 𝑦 } ∈ 𝐸 ) ) = ( 𝑤 ∈ 𝐷 ↦ ( ℩ 𝑦 ∈ 𝑁 { 𝑤 , 𝑦 } ∈ 𝐸 ) ) |
27 |
10 26
|
eqtri |
⊢ 𝐴 = ( 𝑤 ∈ 𝐷 ↦ ( ℩ 𝑦 ∈ 𝑁 { 𝑤 , 𝑦 } ∈ 𝐸 ) ) |
28 |
1 2 3 4 5 6 7 8 9 27
|
frgrncvvdeqlem6 |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐷 ) → { 𝑤 , ( 𝐴 ‘ 𝑤 ) } ∈ 𝐸 ) |
29 |
22 28
|
anim12dan |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) → ( { 𝑢 , ( 𝐴 ‘ 𝑢 ) } ∈ 𝐸 ∧ { 𝑤 , ( 𝐴 ‘ 𝑤 ) } ∈ 𝐸 ) ) |
30 |
|
preq2 |
⊢ ( ( 𝐴 ‘ 𝑤 ) = ( 𝐴 ‘ 𝑢 ) → { 𝑤 , ( 𝐴 ‘ 𝑤 ) } = { 𝑤 , ( 𝐴 ‘ 𝑢 ) } ) |
31 |
30
|
eleq1d |
⊢ ( ( 𝐴 ‘ 𝑤 ) = ( 𝐴 ‘ 𝑢 ) → ( { 𝑤 , ( 𝐴 ‘ 𝑤 ) } ∈ 𝐸 ↔ { 𝑤 , ( 𝐴 ‘ 𝑢 ) } ∈ 𝐸 ) ) |
32 |
31
|
anbi2d |
⊢ ( ( 𝐴 ‘ 𝑤 ) = ( 𝐴 ‘ 𝑢 ) → ( ( { 𝑢 , ( 𝐴 ‘ 𝑢 ) } ∈ 𝐸 ∧ { 𝑤 , ( 𝐴 ‘ 𝑤 ) } ∈ 𝐸 ) ↔ ( { 𝑢 , ( 𝐴 ‘ 𝑢 ) } ∈ 𝐸 ∧ { 𝑤 , ( 𝐴 ‘ 𝑢 ) } ∈ 𝐸 ) ) ) |
33 |
32
|
eqcoms |
⊢ ( ( 𝐴 ‘ 𝑢 ) = ( 𝐴 ‘ 𝑤 ) → ( ( { 𝑢 , ( 𝐴 ‘ 𝑢 ) } ∈ 𝐸 ∧ { 𝑤 , ( 𝐴 ‘ 𝑤 ) } ∈ 𝐸 ) ↔ ( { 𝑢 , ( 𝐴 ‘ 𝑢 ) } ∈ 𝐸 ∧ { 𝑤 , ( 𝐴 ‘ 𝑢 ) } ∈ 𝐸 ) ) ) |
34 |
33
|
biimpa |
⊢ ( ( ( 𝐴 ‘ 𝑢 ) = ( 𝐴 ‘ 𝑤 ) ∧ ( { 𝑢 , ( 𝐴 ‘ 𝑢 ) } ∈ 𝐸 ∧ { 𝑤 , ( 𝐴 ‘ 𝑤 ) } ∈ 𝐸 ) ) → ( { 𝑢 , ( 𝐴 ‘ 𝑢 ) } ∈ 𝐸 ∧ { 𝑤 , ( 𝐴 ‘ 𝑢 ) } ∈ 𝐸 ) ) |
35 |
|
df-ne |
⊢ ( 𝑢 ≠ 𝑤 ↔ ¬ 𝑢 = 𝑤 ) |
36 |
2 3
|
frgrnbnb |
⊢ ( ( 𝐺 ∈ FriendGraph ∧ ( 𝑢 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ∧ 𝑢 ≠ 𝑤 ) → ( ( { 𝑢 , ( 𝐴 ‘ 𝑢 ) } ∈ 𝐸 ∧ { 𝑤 , ( 𝐴 ‘ 𝑢 ) } ∈ 𝐸 ) → ( 𝐴 ‘ 𝑢 ) = 𝑋 ) ) |
37 |
9 36
|
syl3an1 |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ∧ 𝑢 ≠ 𝑤 ) → ( ( { 𝑢 , ( 𝐴 ‘ 𝑢 ) } ∈ 𝐸 ∧ { 𝑤 , ( 𝐴 ‘ 𝑢 ) } ∈ 𝐸 ) → ( 𝐴 ‘ 𝑢 ) = 𝑋 ) ) |
38 |
37
|
3expa |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) ∧ 𝑢 ≠ 𝑤 ) → ( ( { 𝑢 , ( 𝐴 ‘ 𝑢 ) } ∈ 𝐸 ∧ { 𝑤 , ( 𝐴 ‘ 𝑢 ) } ∈ 𝐸 ) → ( 𝐴 ‘ 𝑢 ) = 𝑋 ) ) |
39 |
|
df-nel |
⊢ ( 𝑋 ∉ 𝑁 ↔ ¬ 𝑋 ∈ 𝑁 ) |
40 |
|
eleq1 |
⊢ ( ( 𝐴 ‘ 𝑢 ) = 𝑋 → ( ( 𝐴 ‘ 𝑢 ) ∈ 𝑁 ↔ 𝑋 ∈ 𝑁 ) ) |
41 |
40
|
biimpa |
⊢ ( ( ( 𝐴 ‘ 𝑢 ) = 𝑋 ∧ ( 𝐴 ‘ 𝑢 ) ∈ 𝑁 ) → 𝑋 ∈ 𝑁 ) |
42 |
41
|
pm2.24d |
⊢ ( ( ( 𝐴 ‘ 𝑢 ) = 𝑋 ∧ ( 𝐴 ‘ 𝑢 ) ∈ 𝑁 ) → ( ¬ 𝑋 ∈ 𝑁 → 𝑢 = 𝑤 ) ) |
43 |
42
|
expcom |
⊢ ( ( 𝐴 ‘ 𝑢 ) ∈ 𝑁 → ( ( 𝐴 ‘ 𝑢 ) = 𝑋 → ( ¬ 𝑋 ∈ 𝑁 → 𝑢 = 𝑤 ) ) ) |
44 |
43
|
com13 |
⊢ ( ¬ 𝑋 ∈ 𝑁 → ( ( 𝐴 ‘ 𝑢 ) = 𝑋 → ( ( 𝐴 ‘ 𝑢 ) ∈ 𝑁 → 𝑢 = 𝑤 ) ) ) |
45 |
39 44
|
sylbi |
⊢ ( 𝑋 ∉ 𝑁 → ( ( 𝐴 ‘ 𝑢 ) = 𝑋 → ( ( 𝐴 ‘ 𝑢 ) ∈ 𝑁 → 𝑢 = 𝑤 ) ) ) |
46 |
45
|
com12 |
⊢ ( ( 𝐴 ‘ 𝑢 ) = 𝑋 → ( 𝑋 ∉ 𝑁 → ( ( 𝐴 ‘ 𝑢 ) ∈ 𝑁 → 𝑢 = 𝑤 ) ) ) |
47 |
38 46
|
syl6 |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) ∧ 𝑢 ≠ 𝑤 ) → ( ( { 𝑢 , ( 𝐴 ‘ 𝑢 ) } ∈ 𝐸 ∧ { 𝑤 , ( 𝐴 ‘ 𝑢 ) } ∈ 𝐸 ) → ( 𝑋 ∉ 𝑁 → ( ( 𝐴 ‘ 𝑢 ) ∈ 𝑁 → 𝑢 = 𝑤 ) ) ) ) |
48 |
47
|
expcom |
⊢ ( 𝑢 ≠ 𝑤 → ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) → ( ( { 𝑢 , ( 𝐴 ‘ 𝑢 ) } ∈ 𝐸 ∧ { 𝑤 , ( 𝐴 ‘ 𝑢 ) } ∈ 𝐸 ) → ( 𝑋 ∉ 𝑁 → ( ( 𝐴 ‘ 𝑢 ) ∈ 𝑁 → 𝑢 = 𝑤 ) ) ) ) ) |
49 |
48
|
com23 |
⊢ ( 𝑢 ≠ 𝑤 → ( ( { 𝑢 , ( 𝐴 ‘ 𝑢 ) } ∈ 𝐸 ∧ { 𝑤 , ( 𝐴 ‘ 𝑢 ) } ∈ 𝐸 ) → ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) → ( 𝑋 ∉ 𝑁 → ( ( 𝐴 ‘ 𝑢 ) ∈ 𝑁 → 𝑢 = 𝑤 ) ) ) ) ) |
50 |
35 49
|
sylbir |
⊢ ( ¬ 𝑢 = 𝑤 → ( ( { 𝑢 , ( 𝐴 ‘ 𝑢 ) } ∈ 𝐸 ∧ { 𝑤 , ( 𝐴 ‘ 𝑢 ) } ∈ 𝐸 ) → ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) → ( 𝑋 ∉ 𝑁 → ( ( 𝐴 ‘ 𝑢 ) ∈ 𝑁 → 𝑢 = 𝑤 ) ) ) ) ) |
51 |
34 50
|
syl5com |
⊢ ( ( ( 𝐴 ‘ 𝑢 ) = ( 𝐴 ‘ 𝑤 ) ∧ ( { 𝑢 , ( 𝐴 ‘ 𝑢 ) } ∈ 𝐸 ∧ { 𝑤 , ( 𝐴 ‘ 𝑤 ) } ∈ 𝐸 ) ) → ( ¬ 𝑢 = 𝑤 → ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) → ( 𝑋 ∉ 𝑁 → ( ( 𝐴 ‘ 𝑢 ) ∈ 𝑁 → 𝑢 = 𝑤 ) ) ) ) ) |
52 |
51
|
expcom |
⊢ ( ( { 𝑢 , ( 𝐴 ‘ 𝑢 ) } ∈ 𝐸 ∧ { 𝑤 , ( 𝐴 ‘ 𝑤 ) } ∈ 𝐸 ) → ( ( 𝐴 ‘ 𝑢 ) = ( 𝐴 ‘ 𝑤 ) → ( ¬ 𝑢 = 𝑤 → ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) → ( 𝑋 ∉ 𝑁 → ( ( 𝐴 ‘ 𝑢 ) ∈ 𝑁 → 𝑢 = 𝑤 ) ) ) ) ) ) |
53 |
52
|
com24 |
⊢ ( ( { 𝑢 , ( 𝐴 ‘ 𝑢 ) } ∈ 𝐸 ∧ { 𝑤 , ( 𝐴 ‘ 𝑤 ) } ∈ 𝐸 ) → ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) → ( ¬ 𝑢 = 𝑤 → ( ( 𝐴 ‘ 𝑢 ) = ( 𝐴 ‘ 𝑤 ) → ( 𝑋 ∉ 𝑁 → ( ( 𝐴 ‘ 𝑢 ) ∈ 𝑁 → 𝑢 = 𝑤 ) ) ) ) ) ) |
54 |
29 53
|
mpcom |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) → ( ¬ 𝑢 = 𝑤 → ( ( 𝐴 ‘ 𝑢 ) = ( 𝐴 ‘ 𝑤 ) → ( 𝑋 ∉ 𝑁 → ( ( 𝐴 ‘ 𝑢 ) ∈ 𝑁 → 𝑢 = 𝑤 ) ) ) ) ) |
55 |
54
|
ex |
⊢ ( 𝜑 → ( ( 𝑢 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) → ( ¬ 𝑢 = 𝑤 → ( ( 𝐴 ‘ 𝑢 ) = ( 𝐴 ‘ 𝑤 ) → ( 𝑋 ∉ 𝑁 → ( ( 𝐴 ‘ 𝑢 ) ∈ 𝑁 → 𝑢 = 𝑤 ) ) ) ) ) ) |
56 |
55
|
com3r |
⊢ ( ¬ 𝑢 = 𝑤 → ( 𝜑 → ( ( 𝑢 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) → ( ( 𝐴 ‘ 𝑢 ) = ( 𝐴 ‘ 𝑤 ) → ( 𝑋 ∉ 𝑁 → ( ( 𝐴 ‘ 𝑢 ) ∈ 𝑁 → 𝑢 = 𝑤 ) ) ) ) ) ) |
57 |
56
|
com15 |
⊢ ( 𝑋 ∉ 𝑁 → ( 𝜑 → ( ( 𝑢 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) → ( ( 𝐴 ‘ 𝑢 ) = ( 𝐴 ‘ 𝑤 ) → ( ¬ 𝑢 = 𝑤 → ( ( 𝐴 ‘ 𝑢 ) ∈ 𝑁 → 𝑢 = 𝑤 ) ) ) ) ) ) |
58 |
16 57
|
mpcom |
⊢ ( 𝜑 → ( ( 𝑢 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) → ( ( 𝐴 ‘ 𝑢 ) = ( 𝐴 ‘ 𝑤 ) → ( ¬ 𝑢 = 𝑤 → ( ( 𝐴 ‘ 𝑢 ) ∈ 𝑁 → 𝑢 = 𝑤 ) ) ) ) ) |
59 |
58
|
expd |
⊢ ( 𝜑 → ( 𝑢 ∈ 𝐷 → ( 𝑤 ∈ 𝐷 → ( ( 𝐴 ‘ 𝑢 ) = ( 𝐴 ‘ 𝑤 ) → ( ¬ 𝑢 = 𝑤 → ( ( 𝐴 ‘ 𝑢 ) ∈ 𝑁 → 𝑢 = 𝑤 ) ) ) ) ) ) |
60 |
59
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 : 𝐷 ⟶ 𝑁 ) → ( 𝑢 ∈ 𝐷 → ( 𝑤 ∈ 𝐷 → ( ( 𝐴 ‘ 𝑢 ) = ( 𝐴 ‘ 𝑤 ) → ( ¬ 𝑢 = 𝑤 → ( ( 𝐴 ‘ 𝑢 ) ∈ 𝑁 → 𝑢 = 𝑤 ) ) ) ) ) ) |
61 |
60
|
imp42 |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 : 𝐷 ⟶ 𝑁 ) ∧ ( 𝑢 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) ∧ ( 𝐴 ‘ 𝑢 ) = ( 𝐴 ‘ 𝑤 ) ) → ( ¬ 𝑢 = 𝑤 → ( ( 𝐴 ‘ 𝑢 ) ∈ 𝑁 → 𝑢 = 𝑤 ) ) ) |
62 |
15 61
|
mpid |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 : 𝐷 ⟶ 𝑁 ) ∧ ( 𝑢 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) ∧ ( 𝐴 ‘ 𝑢 ) = ( 𝐴 ‘ 𝑤 ) ) → ( ¬ 𝑢 = 𝑤 → 𝑢 = 𝑤 ) ) |
63 |
62
|
pm2.18d |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 : 𝐷 ⟶ 𝑁 ) ∧ ( 𝑢 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) ∧ ( 𝐴 ‘ 𝑢 ) = ( 𝐴 ‘ 𝑤 ) ) → 𝑢 = 𝑤 ) |
64 |
63
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝐴 : 𝐷 ⟶ 𝑁 ) ∧ ( 𝑢 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) → ( ( 𝐴 ‘ 𝑢 ) = ( 𝐴 ‘ 𝑤 ) → 𝑢 = 𝑤 ) ) |
65 |
64
|
ralrimivva |
⊢ ( ( 𝜑 ∧ 𝐴 : 𝐷 ⟶ 𝑁 ) → ∀ 𝑢 ∈ 𝐷 ∀ 𝑤 ∈ 𝐷 ( ( 𝐴 ‘ 𝑢 ) = ( 𝐴 ‘ 𝑤 ) → 𝑢 = 𝑤 ) ) |
66 |
|
dff13 |
⊢ ( 𝐴 : 𝐷 –1-1→ 𝑁 ↔ ( 𝐴 : 𝐷 ⟶ 𝑁 ∧ ∀ 𝑢 ∈ 𝐷 ∀ 𝑤 ∈ 𝐷 ( ( 𝐴 ‘ 𝑢 ) = ( 𝐴 ‘ 𝑤 ) → 𝑢 = 𝑤 ) ) ) |
67 |
12 65 66
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝐴 : 𝐷 ⟶ 𝑁 ) → 𝐴 : 𝐷 –1-1→ 𝑁 ) |
68 |
11 67
|
mpdan |
⊢ ( 𝜑 → 𝐴 : 𝐷 –1-1→ 𝑁 ) |