Step |
Hyp |
Ref |
Expression |
1 |
|
frgrreggt1.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
simp1 |
⊢ ( ( 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < ( ♯ ‘ 𝑉 ) ) → 𝐺 ∈ FriendGraph ) |
3 |
|
simp2 |
⊢ ( ( 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < ( ♯ ‘ 𝑉 ) ) → 𝑉 ∈ Fin ) |
4 |
|
hashcl |
⊢ ( 𝑉 ∈ Fin → ( ♯ ‘ 𝑉 ) ∈ ℕ0 ) |
5 |
|
0red |
⊢ ( ( ♯ ‘ 𝑉 ) ∈ ℕ0 → 0 ∈ ℝ ) |
6 |
|
3re |
⊢ 3 ∈ ℝ |
7 |
6
|
a1i |
⊢ ( ( ♯ ‘ 𝑉 ) ∈ ℕ0 → 3 ∈ ℝ ) |
8 |
|
nn0re |
⊢ ( ( ♯ ‘ 𝑉 ) ∈ ℕ0 → ( ♯ ‘ 𝑉 ) ∈ ℝ ) |
9 |
5 7 8
|
3jca |
⊢ ( ( ♯ ‘ 𝑉 ) ∈ ℕ0 → ( 0 ∈ ℝ ∧ 3 ∈ ℝ ∧ ( ♯ ‘ 𝑉 ) ∈ ℝ ) ) |
10 |
9
|
adantr |
⊢ ( ( ( ♯ ‘ 𝑉 ) ∈ ℕ0 ∧ 3 < ( ♯ ‘ 𝑉 ) ) → ( 0 ∈ ℝ ∧ 3 ∈ ℝ ∧ ( ♯ ‘ 𝑉 ) ∈ ℝ ) ) |
11 |
|
3pos |
⊢ 0 < 3 |
12 |
11
|
a1i |
⊢ ( ( ( ♯ ‘ 𝑉 ) ∈ ℕ0 ∧ 3 < ( ♯ ‘ 𝑉 ) ) → 0 < 3 ) |
13 |
|
simpr |
⊢ ( ( ( ♯ ‘ 𝑉 ) ∈ ℕ0 ∧ 3 < ( ♯ ‘ 𝑉 ) ) → 3 < ( ♯ ‘ 𝑉 ) ) |
14 |
|
lttr |
⊢ ( ( 0 ∈ ℝ ∧ 3 ∈ ℝ ∧ ( ♯ ‘ 𝑉 ) ∈ ℝ ) → ( ( 0 < 3 ∧ 3 < ( ♯ ‘ 𝑉 ) ) → 0 < ( ♯ ‘ 𝑉 ) ) ) |
15 |
14
|
imp |
⊢ ( ( ( 0 ∈ ℝ ∧ 3 ∈ ℝ ∧ ( ♯ ‘ 𝑉 ) ∈ ℝ ) ∧ ( 0 < 3 ∧ 3 < ( ♯ ‘ 𝑉 ) ) ) → 0 < ( ♯ ‘ 𝑉 ) ) |
16 |
10 12 13 15
|
syl12anc |
⊢ ( ( ( ♯ ‘ 𝑉 ) ∈ ℕ0 ∧ 3 < ( ♯ ‘ 𝑉 ) ) → 0 < ( ♯ ‘ 𝑉 ) ) |
17 |
16
|
ex |
⊢ ( ( ♯ ‘ 𝑉 ) ∈ ℕ0 → ( 3 < ( ♯ ‘ 𝑉 ) → 0 < ( ♯ ‘ 𝑉 ) ) ) |
18 |
|
ltne |
⊢ ( ( 0 ∈ ℝ ∧ 0 < ( ♯ ‘ 𝑉 ) ) → ( ♯ ‘ 𝑉 ) ≠ 0 ) |
19 |
5 17 18
|
syl6an |
⊢ ( ( ♯ ‘ 𝑉 ) ∈ ℕ0 → ( 3 < ( ♯ ‘ 𝑉 ) → ( ♯ ‘ 𝑉 ) ≠ 0 ) ) |
20 |
|
hasheq0 |
⊢ ( 𝑉 ∈ Fin → ( ( ♯ ‘ 𝑉 ) = 0 ↔ 𝑉 = ∅ ) ) |
21 |
20
|
necon3bid |
⊢ ( 𝑉 ∈ Fin → ( ( ♯ ‘ 𝑉 ) ≠ 0 ↔ 𝑉 ≠ ∅ ) ) |
22 |
21
|
biimpcd |
⊢ ( ( ♯ ‘ 𝑉 ) ≠ 0 → ( 𝑉 ∈ Fin → 𝑉 ≠ ∅ ) ) |
23 |
19 22
|
syl6 |
⊢ ( ( ♯ ‘ 𝑉 ) ∈ ℕ0 → ( 3 < ( ♯ ‘ 𝑉 ) → ( 𝑉 ∈ Fin → 𝑉 ≠ ∅ ) ) ) |
24 |
23
|
com23 |
⊢ ( ( ♯ ‘ 𝑉 ) ∈ ℕ0 → ( 𝑉 ∈ Fin → ( 3 < ( ♯ ‘ 𝑉 ) → 𝑉 ≠ ∅ ) ) ) |
25 |
4 24
|
mpcom |
⊢ ( 𝑉 ∈ Fin → ( 3 < ( ♯ ‘ 𝑉 ) → 𝑉 ≠ ∅ ) ) |
26 |
25
|
a1i |
⊢ ( 𝐺 ∈ FriendGraph → ( 𝑉 ∈ Fin → ( 3 < ( ♯ ‘ 𝑉 ) → 𝑉 ≠ ∅ ) ) ) |
27 |
26
|
3imp |
⊢ ( ( 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < ( ♯ ‘ 𝑉 ) ) → 𝑉 ≠ ∅ ) |
28 |
2 3 27
|
3jca |
⊢ ( ( 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < ( ♯ ‘ 𝑉 ) ) → ( 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) ) |
29 |
28
|
ad2antrl |
⊢ ( ( 𝐺 RegUSGraph 𝑘 ∧ ( ( 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < ( ♯ ‘ 𝑉 ) ) ∧ 𝑘 ∈ ℕ0 ) ) → ( 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) ) |
30 |
|
simpl |
⊢ ( ( 𝐺 RegUSGraph 𝑘 ∧ ( ( 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < ( ♯ ‘ 𝑉 ) ) ∧ 𝑘 ∈ ℕ0 ) ) → 𝐺 RegUSGraph 𝑘 ) |
31 |
1
|
frgrregord13 |
⊢ ( ( ( 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) ∧ 𝐺 RegUSGraph 𝑘 ) → ( ( ♯ ‘ 𝑉 ) = 1 ∨ ( ♯ ‘ 𝑉 ) = 3 ) ) |
32 |
29 30 31
|
syl2anc |
⊢ ( ( 𝐺 RegUSGraph 𝑘 ∧ ( ( 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < ( ♯ ‘ 𝑉 ) ) ∧ 𝑘 ∈ ℕ0 ) ) → ( ( ♯ ‘ 𝑉 ) = 1 ∨ ( ♯ ‘ 𝑉 ) = 3 ) ) |
33 |
|
1red |
⊢ ( ( ( ♯ ‘ 𝑉 ) ∈ ℕ0 ∧ 3 < ( ♯ ‘ 𝑉 ) ) → 1 ∈ ℝ ) |
34 |
6
|
a1i |
⊢ ( ( ( ♯ ‘ 𝑉 ) ∈ ℕ0 ∧ 3 < ( ♯ ‘ 𝑉 ) ) → 3 ∈ ℝ ) |
35 |
8
|
adantr |
⊢ ( ( ( ♯ ‘ 𝑉 ) ∈ ℕ0 ∧ 3 < ( ♯ ‘ 𝑉 ) ) → ( ♯ ‘ 𝑉 ) ∈ ℝ ) |
36 |
|
1lt3 |
⊢ 1 < 3 |
37 |
36
|
a1i |
⊢ ( ( ( ♯ ‘ 𝑉 ) ∈ ℕ0 ∧ 3 < ( ♯ ‘ 𝑉 ) ) → 1 < 3 ) |
38 |
33 34 35 37 13
|
lttrd |
⊢ ( ( ( ♯ ‘ 𝑉 ) ∈ ℕ0 ∧ 3 < ( ♯ ‘ 𝑉 ) ) → 1 < ( ♯ ‘ 𝑉 ) ) |
39 |
33 38
|
gtned |
⊢ ( ( ( ♯ ‘ 𝑉 ) ∈ ℕ0 ∧ 3 < ( ♯ ‘ 𝑉 ) ) → ( ♯ ‘ 𝑉 ) ≠ 1 ) |
40 |
|
eqneqall |
⊢ ( ( ♯ ‘ 𝑉 ) = 1 → ( ( ♯ ‘ 𝑉 ) ≠ 1 → ¬ 𝐺 RegUSGraph 𝑘 ) ) |
41 |
39 40
|
syl5com |
⊢ ( ( ( ♯ ‘ 𝑉 ) ∈ ℕ0 ∧ 3 < ( ♯ ‘ 𝑉 ) ) → ( ( ♯ ‘ 𝑉 ) = 1 → ¬ 𝐺 RegUSGraph 𝑘 ) ) |
42 |
|
ltne |
⊢ ( ( 3 ∈ ℝ ∧ 3 < ( ♯ ‘ 𝑉 ) ) → ( ♯ ‘ 𝑉 ) ≠ 3 ) |
43 |
7 42
|
sylan |
⊢ ( ( ( ♯ ‘ 𝑉 ) ∈ ℕ0 ∧ 3 < ( ♯ ‘ 𝑉 ) ) → ( ♯ ‘ 𝑉 ) ≠ 3 ) |
44 |
|
eqneqall |
⊢ ( ( ♯ ‘ 𝑉 ) = 3 → ( ( ♯ ‘ 𝑉 ) ≠ 3 → ¬ 𝐺 RegUSGraph 𝑘 ) ) |
45 |
43 44
|
syl5com |
⊢ ( ( ( ♯ ‘ 𝑉 ) ∈ ℕ0 ∧ 3 < ( ♯ ‘ 𝑉 ) ) → ( ( ♯ ‘ 𝑉 ) = 3 → ¬ 𝐺 RegUSGraph 𝑘 ) ) |
46 |
41 45
|
jaod |
⊢ ( ( ( ♯ ‘ 𝑉 ) ∈ ℕ0 ∧ 3 < ( ♯ ‘ 𝑉 ) ) → ( ( ( ♯ ‘ 𝑉 ) = 1 ∨ ( ♯ ‘ 𝑉 ) = 3 ) → ¬ 𝐺 RegUSGraph 𝑘 ) ) |
47 |
46
|
ex |
⊢ ( ( ♯ ‘ 𝑉 ) ∈ ℕ0 → ( 3 < ( ♯ ‘ 𝑉 ) → ( ( ( ♯ ‘ 𝑉 ) = 1 ∨ ( ♯ ‘ 𝑉 ) = 3 ) → ¬ 𝐺 RegUSGraph 𝑘 ) ) ) |
48 |
4 47
|
syl |
⊢ ( 𝑉 ∈ Fin → ( 3 < ( ♯ ‘ 𝑉 ) → ( ( ( ♯ ‘ 𝑉 ) = 1 ∨ ( ♯ ‘ 𝑉 ) = 3 ) → ¬ 𝐺 RegUSGraph 𝑘 ) ) ) |
49 |
48
|
a1i |
⊢ ( 𝐺 ∈ FriendGraph → ( 𝑉 ∈ Fin → ( 3 < ( ♯ ‘ 𝑉 ) → ( ( ( ♯ ‘ 𝑉 ) = 1 ∨ ( ♯ ‘ 𝑉 ) = 3 ) → ¬ 𝐺 RegUSGraph 𝑘 ) ) ) ) |
50 |
49
|
3imp |
⊢ ( ( 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < ( ♯ ‘ 𝑉 ) ) → ( ( ( ♯ ‘ 𝑉 ) = 1 ∨ ( ♯ ‘ 𝑉 ) = 3 ) → ¬ 𝐺 RegUSGraph 𝑘 ) ) |
51 |
50
|
ad2antrl |
⊢ ( ( 𝐺 RegUSGraph 𝑘 ∧ ( ( 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < ( ♯ ‘ 𝑉 ) ) ∧ 𝑘 ∈ ℕ0 ) ) → ( ( ( ♯ ‘ 𝑉 ) = 1 ∨ ( ♯ ‘ 𝑉 ) = 3 ) → ¬ 𝐺 RegUSGraph 𝑘 ) ) |
52 |
32 51
|
mpd |
⊢ ( ( 𝐺 RegUSGraph 𝑘 ∧ ( ( 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < ( ♯ ‘ 𝑉 ) ) ∧ 𝑘 ∈ ℕ0 ) ) → ¬ 𝐺 RegUSGraph 𝑘 ) |
53 |
52
|
ex |
⊢ ( 𝐺 RegUSGraph 𝑘 → ( ( ( 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < ( ♯ ‘ 𝑉 ) ) ∧ 𝑘 ∈ ℕ0 ) → ¬ 𝐺 RegUSGraph 𝑘 ) ) |
54 |
|
ax-1 |
⊢ ( ¬ 𝐺 RegUSGraph 𝑘 → ( ( ( 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < ( ♯ ‘ 𝑉 ) ) ∧ 𝑘 ∈ ℕ0 ) → ¬ 𝐺 RegUSGraph 𝑘 ) ) |
55 |
53 54
|
pm2.61i |
⊢ ( ( ( 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < ( ♯ ‘ 𝑉 ) ) ∧ 𝑘 ∈ ℕ0 ) → ¬ 𝐺 RegUSGraph 𝑘 ) |
56 |
55
|
ralrimiva |
⊢ ( ( 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < ( ♯ ‘ 𝑉 ) ) → ∀ 𝑘 ∈ ℕ0 ¬ 𝐺 RegUSGraph 𝑘 ) |