| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							frgrreggt1.v | 
							⊢ 𝑉  =  ( Vtx ‘ 𝐺 )  | 
						
						
							| 2 | 
							
								
							 | 
							ancom | 
							⊢ ( ( 𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  ↔  ( 𝑉  ≠  ∅  ∧  𝑉  ∈  Fin ) )  | 
						
						
							| 3 | 
							
								
							 | 
							ancom | 
							⊢ ( ( 𝐺  ∈   FriendGraph   ∧  𝐺  RegUSGraph  𝐾 )  ↔  ( 𝐺  RegUSGraph  𝐾  ∧  𝐺  ∈   FriendGraph  ) )  | 
						
						
							| 4 | 
							
								2 3
							 | 
							anbi12i | 
							⊢ ( ( ( 𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  ∧  ( 𝐺  ∈   FriendGraph   ∧  𝐺  RegUSGraph  𝐾 ) )  ↔  ( ( 𝑉  ≠  ∅  ∧  𝑉  ∈  Fin )  ∧  ( 𝐺  RegUSGraph  𝐾  ∧  𝐺  ∈   FriendGraph  ) ) )  | 
						
						
							| 5 | 
							
								4
							 | 
							biimpi | 
							⊢ ( ( ( 𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  ∧  ( 𝐺  ∈   FriendGraph   ∧  𝐺  RegUSGraph  𝐾 ) )  →  ( ( 𝑉  ≠  ∅  ∧  𝑉  ∈  Fin )  ∧  ( 𝐺  RegUSGraph  𝐾  ∧  𝐺  ∈   FriendGraph  ) ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							ancomd | 
							⊢ ( ( ( 𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  ∧  ( 𝐺  ∈   FriendGraph   ∧  𝐺  RegUSGraph  𝐾 ) )  →  ( ( 𝐺  RegUSGraph  𝐾  ∧  𝐺  ∈   FriendGraph  )  ∧  ( 𝑉  ≠  ∅  ∧  𝑉  ∈  Fin ) ) )  | 
						
						
							| 7 | 
							
								1
							 | 
							numclwwlk7lem | 
							⊢ ( ( ( 𝐺  RegUSGraph  𝐾  ∧  𝐺  ∈   FriendGraph  )  ∧  ( 𝑉  ≠  ∅  ∧  𝑉  ∈  Fin ) )  →  𝐾  ∈  ℕ0 )  | 
						
						
							| 8 | 
							
								6 7
							 | 
							syl | 
							⊢ ( ( ( 𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  ∧  ( 𝐺  ∈   FriendGraph   ∧  𝐺  RegUSGraph  𝐾 ) )  →  𝐾  ∈  ℕ0 )  | 
						
						
							| 9 | 
							
								
							 | 
							neanior | 
							⊢ ( ( 𝐾  ≠  0  ∧  𝐾  ≠  2 )  ↔  ¬  ( 𝐾  =  0  ∨  𝐾  =  2 ) )  | 
						
						
							| 10 | 
							
								
							 | 
							nn0re | 
							⊢ ( 𝐾  ∈  ℕ0  →  𝐾  ∈  ℝ )  | 
						
						
							| 11 | 
							
								
							 | 
							1re | 
							⊢ 1  ∈  ℝ  | 
						
						
							| 12 | 
							
								
							 | 
							lenlt | 
							⊢ ( ( 𝐾  ∈  ℝ  ∧  1  ∈  ℝ )  →  ( 𝐾  ≤  1  ↔  ¬  1  <  𝐾 ) )  | 
						
						
							| 13 | 
							
								10 11 12
							 | 
							sylancl | 
							⊢ ( 𝐾  ∈  ℕ0  →  ( 𝐾  ≤  1  ↔  ¬  1  <  𝐾 ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							adantl | 
							⊢ ( ( ( 𝐾  ≠  0  ∧  𝐾  ≠  2 )  ∧  𝐾  ∈  ℕ0 )  →  ( 𝐾  ≤  1  ↔  ¬  1  <  𝐾 ) )  | 
						
						
							| 15 | 
							
								
							 | 
							elnnne0 | 
							⊢ ( 𝐾  ∈  ℕ  ↔  ( 𝐾  ∈  ℕ0  ∧  𝐾  ≠  0 ) )  | 
						
						
							| 16 | 
							
								
							 | 
							nnle1eq1 | 
							⊢ ( 𝐾  ∈  ℕ  →  ( 𝐾  ≤  1  ↔  𝐾  =  1 ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							biimpd | 
							⊢ ( 𝐾  ∈  ℕ  →  ( 𝐾  ≤  1  →  𝐾  =  1 ) )  | 
						
						
							| 18 | 
							
								15 17
							 | 
							sylbir | 
							⊢ ( ( 𝐾  ∈  ℕ0  ∧  𝐾  ≠  0 )  →  ( 𝐾  ≤  1  →  𝐾  =  1 ) )  | 
						
						
							| 19 | 
							
								18
							 | 
							a1d | 
							⊢ ( ( 𝐾  ∈  ℕ0  ∧  𝐾  ≠  0 )  →  ( 𝐾  ≠  2  →  ( 𝐾  ≤  1  →  𝐾  =  1 ) ) )  | 
						
						
							| 20 | 
							
								19
							 | 
							expimpd | 
							⊢ ( 𝐾  ∈  ℕ0  →  ( ( 𝐾  ≠  0  ∧  𝐾  ≠  2 )  →  ( 𝐾  ≤  1  →  𝐾  =  1 ) ) )  | 
						
						
							| 21 | 
							
								20
							 | 
							impcom | 
							⊢ ( ( ( 𝐾  ≠  0  ∧  𝐾  ≠  2 )  ∧  𝐾  ∈  ℕ0 )  →  ( 𝐾  ≤  1  →  𝐾  =  1 ) )  | 
						
						
							| 22 | 
							
								14 21
							 | 
							sylbird | 
							⊢ ( ( ( 𝐾  ≠  0  ∧  𝐾  ≠  2 )  ∧  𝐾  ∈  ℕ0 )  →  ( ¬  1  <  𝐾  →  𝐾  =  1 ) )  | 
						
						
							| 23 | 
							
								1
							 | 
							fveq2i | 
							⊢ ( ♯ ‘ 𝑉 )  =  ( ♯ ‘ ( Vtx ‘ 𝐺 ) )  | 
						
						
							| 24 | 
							
								23
							 | 
							eqeq1i | 
							⊢ ( ( ♯ ‘ 𝑉 )  =  1  ↔  ( ♯ ‘ ( Vtx ‘ 𝐺 ) )  =  1 )  | 
						
						
							| 25 | 
							
								24
							 | 
							biimpi | 
							⊢ ( ( ♯ ‘ 𝑉 )  =  1  →  ( ♯ ‘ ( Vtx ‘ 𝐺 ) )  =  1 )  | 
						
						
							| 26 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝐺  ∈   FriendGraph   ∧  𝐺  RegUSGraph  𝐾 )  →  𝐺  RegUSGraph  𝐾 )  | 
						
						
							| 27 | 
							
								26
							 | 
							adantl | 
							⊢ ( ( ( 𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  ∧  ( 𝐺  ∈   FriendGraph   ∧  𝐺  RegUSGraph  𝐾 ) )  →  𝐺  RegUSGraph  𝐾 )  | 
						
						
							| 28 | 
							
								
							 | 
							rusgr1vtx | 
							⊢ ( ( ( ♯ ‘ ( Vtx ‘ 𝐺 ) )  =  1  ∧  𝐺  RegUSGraph  𝐾 )  →  𝐾  =  0 )  | 
						
						
							| 29 | 
							
								25 27 28
							 | 
							syl2an | 
							⊢ ( ( ( ♯ ‘ 𝑉 )  =  1  ∧  ( ( 𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  ∧  ( 𝐺  ∈   FriendGraph   ∧  𝐺  RegUSGraph  𝐾 ) ) )  →  𝐾  =  0 )  | 
						
						
							| 30 | 
							
								29
							 | 
							orcd | 
							⊢ ( ( ( ♯ ‘ 𝑉 )  =  1  ∧  ( ( 𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  ∧  ( 𝐺  ∈   FriendGraph   ∧  𝐺  RegUSGraph  𝐾 ) ) )  →  ( 𝐾  =  0  ∨  𝐾  =  2 ) )  | 
						
						
							| 31 | 
							
								30
							 | 
							ex | 
							⊢ ( ( ♯ ‘ 𝑉 )  =  1  →  ( ( ( 𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  ∧  ( 𝐺  ∈   FriendGraph   ∧  𝐺  RegUSGraph  𝐾 ) )  →  ( 𝐾  =  0  ∨  𝐾  =  2 ) ) )  | 
						
						
							| 32 | 
							
								31
							 | 
							a1d | 
							⊢ ( ( ♯ ‘ 𝑉 )  =  1  →  ( 𝐾  =  1  →  ( ( ( 𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  ∧  ( 𝐺  ∈   FriendGraph   ∧  𝐺  RegUSGraph  𝐾 ) )  →  ( 𝐾  =  0  ∨  𝐾  =  2 ) ) ) )  | 
						
						
							| 33 | 
							
								
							 | 
							eqid | 
							⊢ ( VtxDeg ‘ 𝐺 )  =  ( VtxDeg ‘ 𝐺 )  | 
						
						
							| 34 | 
							
								1 33
							 | 
							rusgrprop0 | 
							⊢ ( 𝐺  RegUSGraph  𝐾  →  ( 𝐺  ∈  USGraph  ∧  𝐾  ∈  ℕ0*  ∧  ∀ 𝑣  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  𝐾 ) )  | 
						
						
							| 35 | 
							
								
							 | 
							simp2 | 
							⊢ ( ( ¬  ( ♯ ‘ 𝑉 )  =  1  ∧  𝐺  ∈   FriendGraph   ∧  ( 𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ ) )  →  𝐺  ∈   FriendGraph  )  | 
						
						
							| 36 | 
							
								
							 | 
							hashnncl | 
							⊢ ( 𝑉  ∈  Fin  →  ( ( ♯ ‘ 𝑉 )  ∈  ℕ  ↔  𝑉  ≠  ∅ ) )  | 
						
						
							| 37 | 
							
								
							 | 
							df-ne | 
							⊢ ( ( ♯ ‘ 𝑉 )  ≠  1  ↔  ¬  ( ♯ ‘ 𝑉 )  =  1 )  | 
						
						
							| 38 | 
							
								
							 | 
							nngt1ne1 | 
							⊢ ( ( ♯ ‘ 𝑉 )  ∈  ℕ  →  ( 1  <  ( ♯ ‘ 𝑉 )  ↔  ( ♯ ‘ 𝑉 )  ≠  1 ) )  | 
						
						
							| 39 | 
							
								38
							 | 
							biimprd | 
							⊢ ( ( ♯ ‘ 𝑉 )  ∈  ℕ  →  ( ( ♯ ‘ 𝑉 )  ≠  1  →  1  <  ( ♯ ‘ 𝑉 ) ) )  | 
						
						
							| 40 | 
							
								37 39
							 | 
							biimtrrid | 
							⊢ ( ( ♯ ‘ 𝑉 )  ∈  ℕ  →  ( ¬  ( ♯ ‘ 𝑉 )  =  1  →  1  <  ( ♯ ‘ 𝑉 ) ) )  | 
						
						
							| 41 | 
							
								36 40
							 | 
							biimtrrdi | 
							⊢ ( 𝑉  ∈  Fin  →  ( 𝑉  ≠  ∅  →  ( ¬  ( ♯ ‘ 𝑉 )  =  1  →  1  <  ( ♯ ‘ 𝑉 ) ) ) )  | 
						
						
							| 42 | 
							
								41
							 | 
							imp | 
							⊢ ( ( 𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  →  ( ¬  ( ♯ ‘ 𝑉 )  =  1  →  1  <  ( ♯ ‘ 𝑉 ) ) )  | 
						
						
							| 43 | 
							
								42
							 | 
							impcom | 
							⊢ ( ( ¬  ( ♯ ‘ 𝑉 )  =  1  ∧  ( 𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ ) )  →  1  <  ( ♯ ‘ 𝑉 ) )  | 
						
						
							| 44 | 
							
								1
							 | 
							vdgn1frgrv3 | 
							⊢ ( ( 𝐺  ∈   FriendGraph   ∧  1  <  ( ♯ ‘ 𝑉 ) )  →  ∀ 𝑣  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  ≠  1 )  | 
						
						
							| 45 | 
							
								35 43 44
							 | 
							3imp3i2an | 
							⊢ ( ( ¬  ( ♯ ‘ 𝑉 )  =  1  ∧  𝐺  ∈   FriendGraph   ∧  ( 𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ ) )  →  ∀ 𝑣  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  ≠  1 )  | 
						
						
							| 46 | 
							
								
							 | 
							r19.26 | 
							⊢ ( ∀ 𝑣  ∈  𝑉 ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  ≠  1  ∧  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  𝐾 )  ↔  ( ∀ 𝑣  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  ≠  1  ∧  ∀ 𝑣  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  𝐾 ) )  | 
						
						
							| 47 | 
							
								
							 | 
							r19.2z | 
							⊢ ( ( 𝑉  ≠  ∅  ∧  ∀ 𝑣  ∈  𝑉 ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  ≠  1  ∧  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  𝐾 ) )  →  ∃ 𝑣  ∈  𝑉 ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  ≠  1  ∧  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  𝐾 ) )  | 
						
						
							| 48 | 
							
								
							 | 
							neeq1 | 
							⊢ ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  𝐾  →  ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  ≠  1  ↔  𝐾  ≠  1 ) )  | 
						
						
							| 49 | 
							
								48
							 | 
							biimpd | 
							⊢ ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  𝐾  →  ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  ≠  1  →  𝐾  ≠  1 ) )  | 
						
						
							| 50 | 
							
								49
							 | 
							impcom | 
							⊢ ( ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  ≠  1  ∧  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  𝐾 )  →  𝐾  ≠  1 )  | 
						
						
							| 51 | 
							
								
							 | 
							eqneqall | 
							⊢ ( 𝐾  =  1  →  ( 𝐾  ≠  1  →  ( 𝐾  =  0  ∨  𝐾  =  2 ) ) )  | 
						
						
							| 52 | 
							
								51
							 | 
							com12 | 
							⊢ ( 𝐾  ≠  1  →  ( 𝐾  =  1  →  ( 𝐾  =  0  ∨  𝐾  =  2 ) ) )  | 
						
						
							| 53 | 
							
								50 52
							 | 
							syl | 
							⊢ ( ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  ≠  1  ∧  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  𝐾 )  →  ( 𝐾  =  1  →  ( 𝐾  =  0  ∨  𝐾  =  2 ) ) )  | 
						
						
							| 54 | 
							
								53
							 | 
							rexlimivw | 
							⊢ ( ∃ 𝑣  ∈  𝑉 ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  ≠  1  ∧  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  𝐾 )  →  ( 𝐾  =  1  →  ( 𝐾  =  0  ∨  𝐾  =  2 ) ) )  | 
						
						
							| 55 | 
							
								47 54
							 | 
							syl | 
							⊢ ( ( 𝑉  ≠  ∅  ∧  ∀ 𝑣  ∈  𝑉 ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  ≠  1  ∧  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  𝐾 ) )  →  ( 𝐾  =  1  →  ( 𝐾  =  0  ∨  𝐾  =  2 ) ) )  | 
						
						
							| 56 | 
							
								55
							 | 
							ex | 
							⊢ ( 𝑉  ≠  ∅  →  ( ∀ 𝑣  ∈  𝑉 ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  ≠  1  ∧  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  𝐾 )  →  ( 𝐾  =  1  →  ( 𝐾  =  0  ∨  𝐾  =  2 ) ) ) )  | 
						
						
							| 57 | 
							
								46 56
							 | 
							biimtrrid | 
							⊢ ( 𝑉  ≠  ∅  →  ( ( ∀ 𝑣  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  ≠  1  ∧  ∀ 𝑣  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  𝐾 )  →  ( 𝐾  =  1  →  ( 𝐾  =  0  ∨  𝐾  =  2 ) ) ) )  | 
						
						
							| 58 | 
							
								57
							 | 
							expd | 
							⊢ ( 𝑉  ≠  ∅  →  ( ∀ 𝑣  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  ≠  1  →  ( ∀ 𝑣  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  𝐾  →  ( 𝐾  =  1  →  ( 𝐾  =  0  ∨  𝐾  =  2 ) ) ) ) )  | 
						
						
							| 59 | 
							
								58
							 | 
							com34 | 
							⊢ ( 𝑉  ≠  ∅  →  ( ∀ 𝑣  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  ≠  1  →  ( 𝐾  =  1  →  ( ∀ 𝑣  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  𝐾  →  ( 𝐾  =  0  ∨  𝐾  =  2 ) ) ) ) )  | 
						
						
							| 60 | 
							
								59
							 | 
							adantl | 
							⊢ ( ( 𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  →  ( ∀ 𝑣  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  ≠  1  →  ( 𝐾  =  1  →  ( ∀ 𝑣  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  𝐾  →  ( 𝐾  =  0  ∨  𝐾  =  2 ) ) ) ) )  | 
						
						
							| 61 | 
							
								60
							 | 
							3ad2ant3 | 
							⊢ ( ( ¬  ( ♯ ‘ 𝑉 )  =  1  ∧  𝐺  ∈   FriendGraph   ∧  ( 𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ ) )  →  ( ∀ 𝑣  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  ≠  1  →  ( 𝐾  =  1  →  ( ∀ 𝑣  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  𝐾  →  ( 𝐾  =  0  ∨  𝐾  =  2 ) ) ) ) )  | 
						
						
							| 62 | 
							
								45 61
							 | 
							mpd | 
							⊢ ( ( ¬  ( ♯ ‘ 𝑉 )  =  1  ∧  𝐺  ∈   FriendGraph   ∧  ( 𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ ) )  →  ( 𝐾  =  1  →  ( ∀ 𝑣  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  𝐾  →  ( 𝐾  =  0  ∨  𝐾  =  2 ) ) ) )  | 
						
						
							| 63 | 
							
								62
							 | 
							3exp | 
							⊢ ( ¬  ( ♯ ‘ 𝑉 )  =  1  →  ( 𝐺  ∈   FriendGraph   →  ( ( 𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  →  ( 𝐾  =  1  →  ( ∀ 𝑣  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  𝐾  →  ( 𝐾  =  0  ∨  𝐾  =  2 ) ) ) ) ) )  | 
						
						
							| 64 | 
							
								63
							 | 
							com15 | 
							⊢ ( ∀ 𝑣  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  𝐾  →  ( 𝐺  ∈   FriendGraph   →  ( ( 𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  →  ( 𝐾  =  1  →  ( ¬  ( ♯ ‘ 𝑉 )  =  1  →  ( 𝐾  =  0  ∨  𝐾  =  2 ) ) ) ) ) )  | 
						
						
							| 65 | 
							
								64
							 | 
							3ad2ant3 | 
							⊢ ( ( 𝐺  ∈  USGraph  ∧  𝐾  ∈  ℕ0*  ∧  ∀ 𝑣  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  𝐾 )  →  ( 𝐺  ∈   FriendGraph   →  ( ( 𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  →  ( 𝐾  =  1  →  ( ¬  ( ♯ ‘ 𝑉 )  =  1  →  ( 𝐾  =  0  ∨  𝐾  =  2 ) ) ) ) ) )  | 
						
						
							| 66 | 
							
								34 65
							 | 
							syl | 
							⊢ ( 𝐺  RegUSGraph  𝐾  →  ( 𝐺  ∈   FriendGraph   →  ( ( 𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  →  ( 𝐾  =  1  →  ( ¬  ( ♯ ‘ 𝑉 )  =  1  →  ( 𝐾  =  0  ∨  𝐾  =  2 ) ) ) ) ) )  | 
						
						
							| 67 | 
							
								66
							 | 
							impcom | 
							⊢ ( ( 𝐺  ∈   FriendGraph   ∧  𝐺  RegUSGraph  𝐾 )  →  ( ( 𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  →  ( 𝐾  =  1  →  ( ¬  ( ♯ ‘ 𝑉 )  =  1  →  ( 𝐾  =  0  ∨  𝐾  =  2 ) ) ) ) )  | 
						
						
							| 68 | 
							
								67
							 | 
							impcom | 
							⊢ ( ( ( 𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  ∧  ( 𝐺  ∈   FriendGraph   ∧  𝐺  RegUSGraph  𝐾 ) )  →  ( 𝐾  =  1  →  ( ¬  ( ♯ ‘ 𝑉 )  =  1  →  ( 𝐾  =  0  ∨  𝐾  =  2 ) ) ) )  | 
						
						
							| 69 | 
							
								68
							 | 
							com13 | 
							⊢ ( ¬  ( ♯ ‘ 𝑉 )  =  1  →  ( 𝐾  =  1  →  ( ( ( 𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  ∧  ( 𝐺  ∈   FriendGraph   ∧  𝐺  RegUSGraph  𝐾 ) )  →  ( 𝐾  =  0  ∨  𝐾  =  2 ) ) ) )  | 
						
						
							| 70 | 
							
								32 69
							 | 
							pm2.61i | 
							⊢ ( 𝐾  =  1  →  ( ( ( 𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  ∧  ( 𝐺  ∈   FriendGraph   ∧  𝐺  RegUSGraph  𝐾 ) )  →  ( 𝐾  =  0  ∨  𝐾  =  2 ) ) )  | 
						
						
							| 71 | 
							
								22 70
							 | 
							syl6 | 
							⊢ ( ( ( 𝐾  ≠  0  ∧  𝐾  ≠  2 )  ∧  𝐾  ∈  ℕ0 )  →  ( ¬  1  <  𝐾  →  ( ( ( 𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  ∧  ( 𝐺  ∈   FriendGraph   ∧  𝐺  RegUSGraph  𝐾 ) )  →  ( 𝐾  =  0  ∨  𝐾  =  2 ) ) ) )  | 
						
						
							| 72 | 
							
								71
							 | 
							ex | 
							⊢ ( ( 𝐾  ≠  0  ∧  𝐾  ≠  2 )  →  ( 𝐾  ∈  ℕ0  →  ( ¬  1  <  𝐾  →  ( ( ( 𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  ∧  ( 𝐺  ∈   FriendGraph   ∧  𝐺  RegUSGraph  𝐾 ) )  →  ( 𝐾  =  0  ∨  𝐾  =  2 ) ) ) ) )  | 
						
						
							| 73 | 
							
								72
							 | 
							com23 | 
							⊢ ( ( 𝐾  ≠  0  ∧  𝐾  ≠  2 )  →  ( ¬  1  <  𝐾  →  ( 𝐾  ∈  ℕ0  →  ( ( ( 𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  ∧  ( 𝐺  ∈   FriendGraph   ∧  𝐺  RegUSGraph  𝐾 ) )  →  ( 𝐾  =  0  ∨  𝐾  =  2 ) ) ) ) )  | 
						
						
							| 74 | 
							
								9 73
							 | 
							sylbir | 
							⊢ ( ¬  ( 𝐾  =  0  ∨  𝐾  =  2 )  →  ( ¬  1  <  𝐾  →  ( 𝐾  ∈  ℕ0  →  ( ( ( 𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  ∧  ( 𝐺  ∈   FriendGraph   ∧  𝐺  RegUSGraph  𝐾 ) )  →  ( 𝐾  =  0  ∨  𝐾  =  2 ) ) ) ) )  | 
						
						
							| 75 | 
							
								74
							 | 
							impcom | 
							⊢ ( ( ¬  1  <  𝐾  ∧  ¬  ( 𝐾  =  0  ∨  𝐾  =  2 ) )  →  ( 𝐾  ∈  ℕ0  →  ( ( ( 𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  ∧  ( 𝐺  ∈   FriendGraph   ∧  𝐺  RegUSGraph  𝐾 ) )  →  ( 𝐾  =  0  ∨  𝐾  =  2 ) ) ) )  | 
						
						
							| 76 | 
							
								75
							 | 
							com13 | 
							⊢ ( ( ( 𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  ∧  ( 𝐺  ∈   FriendGraph   ∧  𝐺  RegUSGraph  𝐾 ) )  →  ( 𝐾  ∈  ℕ0  →  ( ( ¬  1  <  𝐾  ∧  ¬  ( 𝐾  =  0  ∨  𝐾  =  2 ) )  →  ( 𝐾  =  0  ∨  𝐾  =  2 ) ) ) )  | 
						
						
							| 77 | 
							
								8 76
							 | 
							mpd | 
							⊢ ( ( ( 𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  ∧  ( 𝐺  ∈   FriendGraph   ∧  𝐺  RegUSGraph  𝐾 ) )  →  ( ( ¬  1  <  𝐾  ∧  ¬  ( 𝐾  =  0  ∨  𝐾  =  2 ) )  →  ( 𝐾  =  0  ∨  𝐾  =  2 ) ) )  | 
						
						
							| 78 | 
							
								77
							 | 
							com12 | 
							⊢ ( ( ¬  1  <  𝐾  ∧  ¬  ( 𝐾  =  0  ∨  𝐾  =  2 ) )  →  ( ( ( 𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  ∧  ( 𝐺  ∈   FriendGraph   ∧  𝐺  RegUSGraph  𝐾 ) )  →  ( 𝐾  =  0  ∨  𝐾  =  2 ) ) )  | 
						
						
							| 79 | 
							
								78
							 | 
							exp4b | 
							⊢ ( ¬  1  <  𝐾  →  ( ¬  ( 𝐾  =  0  ∨  𝐾  =  2 )  →  ( ( 𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  →  ( ( 𝐺  ∈   FriendGraph   ∧  𝐺  RegUSGraph  𝐾 )  →  ( 𝐾  =  0  ∨  𝐾  =  2 ) ) ) ) )  | 
						
						
							| 80 | 
							
								
							 | 
							simprl | 
							⊢ ( ( ( 1  <  𝐾  ∧  ( 𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ ) )  ∧  ( 𝐺  ∈   FriendGraph   ∧  𝐺  RegUSGraph  𝐾 ) )  →  𝐺  ∈   FriendGraph  )  | 
						
						
							| 81 | 
							
								
							 | 
							simpl | 
							⊢ ( ( 𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  →  𝑉  ∈  Fin )  | 
						
						
							| 82 | 
							
								81
							 | 
							ad2antlr | 
							⊢ ( ( ( 1  <  𝐾  ∧  ( 𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ ) )  ∧  ( 𝐺  ∈   FriendGraph   ∧  𝐺  RegUSGraph  𝐾 ) )  →  𝑉  ∈  Fin )  | 
						
						
							| 83 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  →  𝑉  ≠  ∅ )  | 
						
						
							| 84 | 
							
								83
							 | 
							ad2antlr | 
							⊢ ( ( ( 1  <  𝐾  ∧  ( 𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ ) )  ∧  ( 𝐺  ∈   FriendGraph   ∧  𝐺  RegUSGraph  𝐾 ) )  →  𝑉  ≠  ∅ )  | 
						
						
							| 85 | 
							
								
							 | 
							simpl | 
							⊢ ( ( 1  <  𝐾  ∧  ( 𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ ) )  →  1  <  𝐾 )  | 
						
						
							| 86 | 
							
								85 26
							 | 
							anim12ci | 
							⊢ ( ( ( 1  <  𝐾  ∧  ( 𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ ) )  ∧  ( 𝐺  ∈   FriendGraph   ∧  𝐺  RegUSGraph  𝐾 ) )  →  ( 𝐺  RegUSGraph  𝐾  ∧  1  <  𝐾 ) )  | 
						
						
							| 87 | 
							
								1
							 | 
							frgrreggt1 | 
							⊢ ( ( 𝐺  ∈   FriendGraph   ∧  𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  →  ( ( 𝐺  RegUSGraph  𝐾  ∧  1  <  𝐾 )  →  𝐾  =  2 ) )  | 
						
						
							| 88 | 
							
								87
							 | 
							imp | 
							⊢ ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  ∧  ( 𝐺  RegUSGraph  𝐾  ∧  1  <  𝐾 ) )  →  𝐾  =  2 )  | 
						
						
							| 89 | 
							
								80 82 84 86 88
							 | 
							syl31anc | 
							⊢ ( ( ( 1  <  𝐾  ∧  ( 𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ ) )  ∧  ( 𝐺  ∈   FriendGraph   ∧  𝐺  RegUSGraph  𝐾 ) )  →  𝐾  =  2 )  | 
						
						
							| 90 | 
							
								89
							 | 
							olcd | 
							⊢ ( ( ( 1  <  𝐾  ∧  ( 𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ ) )  ∧  ( 𝐺  ∈   FriendGraph   ∧  𝐺  RegUSGraph  𝐾 ) )  →  ( 𝐾  =  0  ∨  𝐾  =  2 ) )  | 
						
						
							| 91 | 
							
								90
							 | 
							exp31 | 
							⊢ ( 1  <  𝐾  →  ( ( 𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  →  ( ( 𝐺  ∈   FriendGraph   ∧  𝐺  RegUSGraph  𝐾 )  →  ( 𝐾  =  0  ∨  𝐾  =  2 ) ) ) )  | 
						
						
							| 92 | 
							
								
							 | 
							2a1 | 
							⊢ ( ( 𝐾  =  0  ∨  𝐾  =  2 )  →  ( ( 𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  →  ( ( 𝐺  ∈   FriendGraph   ∧  𝐺  RegUSGraph  𝐾 )  →  ( 𝐾  =  0  ∨  𝐾  =  2 ) ) ) )  | 
						
						
							| 93 | 
							
								79 91 92
							 | 
							pm2.61ii | 
							⊢ ( ( 𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  →  ( ( 𝐺  ∈   FriendGraph   ∧  𝐺  RegUSGraph  𝐾 )  →  ( 𝐾  =  0  ∨  𝐾  =  2 ) ) )  |