Step |
Hyp |
Ref |
Expression |
1 |
|
frgrreggt1.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
hashcl |
⊢ ( 𝑉 ∈ Fin → ( ♯ ‘ 𝑉 ) ∈ ℕ0 ) |
3 |
|
ax-1 |
⊢ ( ( ( ♯ ‘ 𝑉 ) = 0 ∨ ( ♯ ‘ 𝑉 ) = 1 ∨ ( ♯ ‘ 𝑉 ) = 3 ) → ( ( ( ( ♯ ‘ 𝑉 ) ∈ ℕ0 ∧ 𝑉 ∈ Fin ∧ 𝐺 ∈ FriendGraph ) ∧ 𝐺 RegUSGraph 𝐾 ) → ( ( ♯ ‘ 𝑉 ) = 0 ∨ ( ♯ ‘ 𝑉 ) = 1 ∨ ( ♯ ‘ 𝑉 ) = 3 ) ) ) |
4 |
|
3ioran |
⊢ ( ¬ ( ( ♯ ‘ 𝑉 ) = 0 ∨ ( ♯ ‘ 𝑉 ) = 1 ∨ ( ♯ ‘ 𝑉 ) = 3 ) ↔ ( ¬ ( ♯ ‘ 𝑉 ) = 0 ∧ ¬ ( ♯ ‘ 𝑉 ) = 1 ∧ ¬ ( ♯ ‘ 𝑉 ) = 3 ) ) |
5 |
|
df-ne |
⊢ ( ( ♯ ‘ 𝑉 ) ≠ 0 ↔ ¬ ( ♯ ‘ 𝑉 ) = 0 ) |
6 |
|
hasheq0 |
⊢ ( 𝑉 ∈ Fin → ( ( ♯ ‘ 𝑉 ) = 0 ↔ 𝑉 = ∅ ) ) |
7 |
6
|
necon3bid |
⊢ ( 𝑉 ∈ Fin → ( ( ♯ ‘ 𝑉 ) ≠ 0 ↔ 𝑉 ≠ ∅ ) ) |
8 |
7
|
biimpa |
⊢ ( ( 𝑉 ∈ Fin ∧ ( ♯ ‘ 𝑉 ) ≠ 0 ) → 𝑉 ≠ ∅ ) |
9 |
|
elnnne0 |
⊢ ( ( ♯ ‘ 𝑉 ) ∈ ℕ ↔ ( ( ♯ ‘ 𝑉 ) ∈ ℕ0 ∧ ( ♯ ‘ 𝑉 ) ≠ 0 ) ) |
10 |
|
df-ne |
⊢ ( ( ♯ ‘ 𝑉 ) ≠ 1 ↔ ¬ ( ♯ ‘ 𝑉 ) = 1 ) |
11 |
|
eluz2b3 |
⊢ ( ( ♯ ‘ 𝑉 ) ∈ ( ℤ≥ ‘ 2 ) ↔ ( ( ♯ ‘ 𝑉 ) ∈ ℕ ∧ ( ♯ ‘ 𝑉 ) ≠ 1 ) ) |
12 |
|
hash2prde |
⊢ ( ( 𝑉 ∈ Fin ∧ ( ♯ ‘ 𝑉 ) = 2 ) → ∃ 𝑎 ∃ 𝑏 ( 𝑎 ≠ 𝑏 ∧ 𝑉 = { 𝑎 , 𝑏 } ) ) |
13 |
|
vex |
⊢ 𝑎 ∈ V |
14 |
13
|
a1i |
⊢ ( 𝑎 ≠ 𝑏 → 𝑎 ∈ V ) |
15 |
|
vex |
⊢ 𝑏 ∈ V |
16 |
15
|
a1i |
⊢ ( 𝑎 ≠ 𝑏 → 𝑏 ∈ V ) |
17 |
|
id |
⊢ ( 𝑎 ≠ 𝑏 → 𝑎 ≠ 𝑏 ) |
18 |
14 16 17
|
3jca |
⊢ ( 𝑎 ≠ 𝑏 → ( 𝑎 ∈ V ∧ 𝑏 ∈ V ∧ 𝑎 ≠ 𝑏 ) ) |
19 |
1
|
eqeq1i |
⊢ ( 𝑉 = { 𝑎 , 𝑏 } ↔ ( Vtx ‘ 𝐺 ) = { 𝑎 , 𝑏 } ) |
20 |
19
|
biimpi |
⊢ ( 𝑉 = { 𝑎 , 𝑏 } → ( Vtx ‘ 𝐺 ) = { 𝑎 , 𝑏 } ) |
21 |
|
nfrgr2v |
⊢ ( ( ( 𝑎 ∈ V ∧ 𝑏 ∈ V ∧ 𝑎 ≠ 𝑏 ) ∧ ( Vtx ‘ 𝐺 ) = { 𝑎 , 𝑏 } ) → 𝐺 ∉ FriendGraph ) |
22 |
18 20 21
|
syl2an |
⊢ ( ( 𝑎 ≠ 𝑏 ∧ 𝑉 = { 𝑎 , 𝑏 } ) → 𝐺 ∉ FriendGraph ) |
23 |
|
df-nel |
⊢ ( 𝐺 ∉ FriendGraph ↔ ¬ 𝐺 ∈ FriendGraph ) |
24 |
22 23
|
sylib |
⊢ ( ( 𝑎 ≠ 𝑏 ∧ 𝑉 = { 𝑎 , 𝑏 } ) → ¬ 𝐺 ∈ FriendGraph ) |
25 |
24
|
pm2.21d |
⊢ ( ( 𝑎 ≠ 𝑏 ∧ 𝑉 = { 𝑎 , 𝑏 } ) → ( 𝐺 ∈ FriendGraph → ( 𝑉 ≠ ∅ → ( ¬ ( ♯ ‘ 𝑉 ) = 3 → ( 𝐺 RegUSGraph 𝐾 → ( ( ♯ ‘ 𝑉 ) = 0 ∨ ( ♯ ‘ 𝑉 ) = 1 ∨ ( ♯ ‘ 𝑉 ) = 3 ) ) ) ) ) ) |
26 |
25
|
com23 |
⊢ ( ( 𝑎 ≠ 𝑏 ∧ 𝑉 = { 𝑎 , 𝑏 } ) → ( 𝑉 ≠ ∅ → ( 𝐺 ∈ FriendGraph → ( ¬ ( ♯ ‘ 𝑉 ) = 3 → ( 𝐺 RegUSGraph 𝐾 → ( ( ♯ ‘ 𝑉 ) = 0 ∨ ( ♯ ‘ 𝑉 ) = 1 ∨ ( ♯ ‘ 𝑉 ) = 3 ) ) ) ) ) ) |
27 |
26
|
exlimivv |
⊢ ( ∃ 𝑎 ∃ 𝑏 ( 𝑎 ≠ 𝑏 ∧ 𝑉 = { 𝑎 , 𝑏 } ) → ( 𝑉 ≠ ∅ → ( 𝐺 ∈ FriendGraph → ( ¬ ( ♯ ‘ 𝑉 ) = 3 → ( 𝐺 RegUSGraph 𝐾 → ( ( ♯ ‘ 𝑉 ) = 0 ∨ ( ♯ ‘ 𝑉 ) = 1 ∨ ( ♯ ‘ 𝑉 ) = 3 ) ) ) ) ) ) |
28 |
12 27
|
syl |
⊢ ( ( 𝑉 ∈ Fin ∧ ( ♯ ‘ 𝑉 ) = 2 ) → ( 𝑉 ≠ ∅ → ( 𝐺 ∈ FriendGraph → ( ¬ ( ♯ ‘ 𝑉 ) = 3 → ( 𝐺 RegUSGraph 𝐾 → ( ( ♯ ‘ 𝑉 ) = 0 ∨ ( ♯ ‘ 𝑉 ) = 1 ∨ ( ♯ ‘ 𝑉 ) = 3 ) ) ) ) ) ) |
29 |
28
|
ex |
⊢ ( 𝑉 ∈ Fin → ( ( ♯ ‘ 𝑉 ) = 2 → ( 𝑉 ≠ ∅ → ( 𝐺 ∈ FriendGraph → ( ¬ ( ♯ ‘ 𝑉 ) = 3 → ( 𝐺 RegUSGraph 𝐾 → ( ( ♯ ‘ 𝑉 ) = 0 ∨ ( ♯ ‘ 𝑉 ) = 1 ∨ ( ♯ ‘ 𝑉 ) = 3 ) ) ) ) ) ) ) |
30 |
29
|
com23 |
⊢ ( 𝑉 ∈ Fin → ( 𝑉 ≠ ∅ → ( ( ♯ ‘ 𝑉 ) = 2 → ( 𝐺 ∈ FriendGraph → ( ¬ ( ♯ ‘ 𝑉 ) = 3 → ( 𝐺 RegUSGraph 𝐾 → ( ( ♯ ‘ 𝑉 ) = 0 ∨ ( ♯ ‘ 𝑉 ) = 1 ∨ ( ♯ ‘ 𝑉 ) = 3 ) ) ) ) ) ) ) |
31 |
30
|
com14 |
⊢ ( 𝐺 ∈ FriendGraph → ( 𝑉 ≠ ∅ → ( ( ♯ ‘ 𝑉 ) = 2 → ( 𝑉 ∈ Fin → ( ¬ ( ♯ ‘ 𝑉 ) = 3 → ( 𝐺 RegUSGraph 𝐾 → ( ( ♯ ‘ 𝑉 ) = 0 ∨ ( ♯ ‘ 𝑉 ) = 1 ∨ ( ♯ ‘ 𝑉 ) = 3 ) ) ) ) ) ) ) |
32 |
31
|
a1i |
⊢ ( ( ♯ ‘ 𝑉 ) ∈ ( ℤ≥ ‘ 2 ) → ( 𝐺 ∈ FriendGraph → ( 𝑉 ≠ ∅ → ( ( ♯ ‘ 𝑉 ) = 2 → ( 𝑉 ∈ Fin → ( ¬ ( ♯ ‘ 𝑉 ) = 3 → ( 𝐺 RegUSGraph 𝐾 → ( ( ♯ ‘ 𝑉 ) = 0 ∨ ( ♯ ‘ 𝑉 ) = 1 ∨ ( ♯ ‘ 𝑉 ) = 3 ) ) ) ) ) ) ) ) |
33 |
32
|
3imp |
⊢ ( ( ( ♯ ‘ 𝑉 ) ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐺 ∈ FriendGraph ∧ 𝑉 ≠ ∅ ) → ( ( ♯ ‘ 𝑉 ) = 2 → ( 𝑉 ∈ Fin → ( ¬ ( ♯ ‘ 𝑉 ) = 3 → ( 𝐺 RegUSGraph 𝐾 → ( ( ♯ ‘ 𝑉 ) = 0 ∨ ( ♯ ‘ 𝑉 ) = 1 ∨ ( ♯ ‘ 𝑉 ) = 3 ) ) ) ) ) ) |
34 |
33
|
com12 |
⊢ ( ( ♯ ‘ 𝑉 ) = 2 → ( ( ( ♯ ‘ 𝑉 ) ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐺 ∈ FriendGraph ∧ 𝑉 ≠ ∅ ) → ( 𝑉 ∈ Fin → ( ¬ ( ♯ ‘ 𝑉 ) = 3 → ( 𝐺 RegUSGraph 𝐾 → ( ( ♯ ‘ 𝑉 ) = 0 ∨ ( ♯ ‘ 𝑉 ) = 1 ∨ ( ♯ ‘ 𝑉 ) = 3 ) ) ) ) ) ) |
35 |
|
eqid |
⊢ ( VtxDeg ‘ 𝐺 ) = ( VtxDeg ‘ 𝐺 ) |
36 |
1 35
|
rusgrprop0 |
⊢ ( 𝐺 RegUSGraph 𝐾 → ( 𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀ 𝑣 ∈ 𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝐾 ) ) |
37 |
|
eluz2gt1 |
⊢ ( ( ♯ ‘ 𝑉 ) ∈ ( ℤ≥ ‘ 2 ) → 1 < ( ♯ ‘ 𝑉 ) ) |
38 |
37
|
anim1ci |
⊢ ( ( ( ♯ ‘ 𝑉 ) ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐺 ∈ FriendGraph ) → ( 𝐺 ∈ FriendGraph ∧ 1 < ( ♯ ‘ 𝑉 ) ) ) |
39 |
1
|
vdgn0frgrv2 |
⊢ ( ( 𝐺 ∈ FriendGraph ∧ 𝑣 ∈ 𝑉 ) → ( 1 < ( ♯ ‘ 𝑉 ) → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) ≠ 0 ) ) |
40 |
39
|
impancom |
⊢ ( ( 𝐺 ∈ FriendGraph ∧ 1 < ( ♯ ‘ 𝑉 ) ) → ( 𝑣 ∈ 𝑉 → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) ≠ 0 ) ) |
41 |
40
|
ralrimiv |
⊢ ( ( 𝐺 ∈ FriendGraph ∧ 1 < ( ♯ ‘ 𝑉 ) ) → ∀ 𝑣 ∈ 𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) ≠ 0 ) |
42 |
|
eqeq2 |
⊢ ( 𝐾 = 0 → ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝐾 ↔ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 0 ) ) |
43 |
42
|
ralbidv |
⊢ ( 𝐾 = 0 → ( ∀ 𝑣 ∈ 𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝐾 ↔ ∀ 𝑣 ∈ 𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 0 ) ) |
44 |
|
r19.26 |
⊢ ( ∀ 𝑣 ∈ 𝑉 ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 0 ∧ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) ≠ 0 ) ↔ ( ∀ 𝑣 ∈ 𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 0 ∧ ∀ 𝑣 ∈ 𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) ≠ 0 ) ) |
45 |
|
nne |
⊢ ( ¬ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) ≠ 0 ↔ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 0 ) |
46 |
45
|
bicomi |
⊢ ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 0 ↔ ¬ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) ≠ 0 ) |
47 |
46
|
anbi1i |
⊢ ( ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 0 ∧ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) ≠ 0 ) ↔ ( ¬ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) ≠ 0 ∧ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) ≠ 0 ) ) |
48 |
|
ancom |
⊢ ( ( ¬ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) ≠ 0 ∧ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) ≠ 0 ) ↔ ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) ≠ 0 ∧ ¬ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) ≠ 0 ) ) |
49 |
|
pm3.24 |
⊢ ¬ ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) ≠ 0 ∧ ¬ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) ≠ 0 ) |
50 |
49
|
bifal |
⊢ ( ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) ≠ 0 ∧ ¬ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) ≠ 0 ) ↔ ⊥ ) |
51 |
47 48 50
|
3bitri |
⊢ ( ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 0 ∧ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) ≠ 0 ) ↔ ⊥ ) |
52 |
51
|
ralbii |
⊢ ( ∀ 𝑣 ∈ 𝑉 ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 0 ∧ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) ≠ 0 ) ↔ ∀ 𝑣 ∈ 𝑉 ⊥ ) |
53 |
|
r19.3rzv |
⊢ ( 𝑉 ≠ ∅ → ( ⊥ ↔ ∀ 𝑣 ∈ 𝑉 ⊥ ) ) |
54 |
|
falim |
⊢ ( ⊥ → ( ( ♯ ‘ 𝑉 ) = 0 ∨ ( ♯ ‘ 𝑉 ) = 1 ∨ ( ♯ ‘ 𝑉 ) = 3 ) ) |
55 |
53 54
|
syl6bir |
⊢ ( 𝑉 ≠ ∅ → ( ∀ 𝑣 ∈ 𝑉 ⊥ → ( ( ♯ ‘ 𝑉 ) = 0 ∨ ( ♯ ‘ 𝑉 ) = 1 ∨ ( ♯ ‘ 𝑉 ) = 3 ) ) ) |
56 |
55
|
adantl |
⊢ ( ( 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) → ( ∀ 𝑣 ∈ 𝑉 ⊥ → ( ( ♯ ‘ 𝑉 ) = 0 ∨ ( ♯ ‘ 𝑉 ) = 1 ∨ ( ♯ ‘ 𝑉 ) = 3 ) ) ) |
57 |
56
|
com12 |
⊢ ( ∀ 𝑣 ∈ 𝑉 ⊥ → ( ( 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) → ( ( ♯ ‘ 𝑉 ) = 0 ∨ ( ♯ ‘ 𝑉 ) = 1 ∨ ( ♯ ‘ 𝑉 ) = 3 ) ) ) |
58 |
52 57
|
sylbi |
⊢ ( ∀ 𝑣 ∈ 𝑉 ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 0 ∧ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) ≠ 0 ) → ( ( 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) → ( ( ♯ ‘ 𝑉 ) = 0 ∨ ( ♯ ‘ 𝑉 ) = 1 ∨ ( ♯ ‘ 𝑉 ) = 3 ) ) ) |
59 |
44 58
|
sylbir |
⊢ ( ( ∀ 𝑣 ∈ 𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 0 ∧ ∀ 𝑣 ∈ 𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) ≠ 0 ) → ( ( 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) → ( ( ♯ ‘ 𝑉 ) = 0 ∨ ( ♯ ‘ 𝑉 ) = 1 ∨ ( ♯ ‘ 𝑉 ) = 3 ) ) ) |
60 |
59
|
ex |
⊢ ( ∀ 𝑣 ∈ 𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 0 → ( ∀ 𝑣 ∈ 𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) ≠ 0 → ( ( 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) → ( ( ♯ ‘ 𝑉 ) = 0 ∨ ( ♯ ‘ 𝑉 ) = 1 ∨ ( ♯ ‘ 𝑉 ) = 3 ) ) ) ) |
61 |
43 60
|
syl6bi |
⊢ ( 𝐾 = 0 → ( ∀ 𝑣 ∈ 𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝐾 → ( ∀ 𝑣 ∈ 𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) ≠ 0 → ( ( 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) → ( ( ♯ ‘ 𝑉 ) = 0 ∨ ( ♯ ‘ 𝑉 ) = 1 ∨ ( ♯ ‘ 𝑉 ) = 3 ) ) ) ) ) |
62 |
61
|
com4t |
⊢ ( ∀ 𝑣 ∈ 𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) ≠ 0 → ( ( 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) → ( 𝐾 = 0 → ( ∀ 𝑣 ∈ 𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝐾 → ( ( ♯ ‘ 𝑉 ) = 0 ∨ ( ♯ ‘ 𝑉 ) = 1 ∨ ( ♯ ‘ 𝑉 ) = 3 ) ) ) ) ) |
63 |
38 41 62
|
3syl |
⊢ ( ( ( ♯ ‘ 𝑉 ) ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐺 ∈ FriendGraph ) → ( ( 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) → ( 𝐾 = 0 → ( ∀ 𝑣 ∈ 𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝐾 → ( ( ♯ ‘ 𝑉 ) = 0 ∨ ( ♯ ‘ 𝑉 ) = 1 ∨ ( ♯ ‘ 𝑉 ) = 3 ) ) ) ) ) |
64 |
63
|
ex |
⊢ ( ( ♯ ‘ 𝑉 ) ∈ ( ℤ≥ ‘ 2 ) → ( 𝐺 ∈ FriendGraph → ( ( 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) → ( 𝐾 = 0 → ( ∀ 𝑣 ∈ 𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝐾 → ( ( ♯ ‘ 𝑉 ) = 0 ∨ ( ♯ ‘ 𝑉 ) = 1 ∨ ( ♯ ‘ 𝑉 ) = 3 ) ) ) ) ) ) |
65 |
64
|
com25 |
⊢ ( ( ♯ ‘ 𝑉 ) ∈ ( ℤ≥ ‘ 2 ) → ( ∀ 𝑣 ∈ 𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝐾 → ( ( 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) → ( 𝐾 = 0 → ( 𝐺 ∈ FriendGraph → ( ( ♯ ‘ 𝑉 ) = 0 ∨ ( ♯ ‘ 𝑉 ) = 1 ∨ ( ♯ ‘ 𝑉 ) = 3 ) ) ) ) ) ) |
66 |
65
|
adantl |
⊢ ( ( ( ¬ ( ♯ ‘ 𝑉 ) = 3 ∧ ¬ ( ♯ ‘ 𝑉 ) = 2 ) ∧ ( ♯ ‘ 𝑉 ) ∈ ( ℤ≥ ‘ 2 ) ) → ( ∀ 𝑣 ∈ 𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝐾 → ( ( 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) → ( 𝐾 = 0 → ( 𝐺 ∈ FriendGraph → ( ( ♯ ‘ 𝑉 ) = 0 ∨ ( ♯ ‘ 𝑉 ) = 1 ∨ ( ♯ ‘ 𝑉 ) = 3 ) ) ) ) ) ) |
67 |
66
|
com15 |
⊢ ( 𝐺 ∈ FriendGraph → ( ∀ 𝑣 ∈ 𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝐾 → ( ( 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) → ( 𝐾 = 0 → ( ( ( ¬ ( ♯ ‘ 𝑉 ) = 3 ∧ ¬ ( ♯ ‘ 𝑉 ) = 2 ) ∧ ( ♯ ‘ 𝑉 ) ∈ ( ℤ≥ ‘ 2 ) ) → ( ( ♯ ‘ 𝑉 ) = 0 ∨ ( ♯ ‘ 𝑉 ) = 1 ∨ ( ♯ ‘ 𝑉 ) = 3 ) ) ) ) ) ) |
68 |
67
|
com12 |
⊢ ( ∀ 𝑣 ∈ 𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝐾 → ( 𝐺 ∈ FriendGraph → ( ( 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) → ( 𝐾 = 0 → ( ( ( ¬ ( ♯ ‘ 𝑉 ) = 3 ∧ ¬ ( ♯ ‘ 𝑉 ) = 2 ) ∧ ( ♯ ‘ 𝑉 ) ∈ ( ℤ≥ ‘ 2 ) ) → ( ( ♯ ‘ 𝑉 ) = 0 ∨ ( ♯ ‘ 𝑉 ) = 1 ∨ ( ♯ ‘ 𝑉 ) = 3 ) ) ) ) ) ) |
69 |
68
|
3ad2ant3 |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀ 𝑣 ∈ 𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝐾 ) → ( 𝐺 ∈ FriendGraph → ( ( 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) → ( 𝐾 = 0 → ( ( ( ¬ ( ♯ ‘ 𝑉 ) = 3 ∧ ¬ ( ♯ ‘ 𝑉 ) = 2 ) ∧ ( ♯ ‘ 𝑉 ) ∈ ( ℤ≥ ‘ 2 ) ) → ( ( ♯ ‘ 𝑉 ) = 0 ∨ ( ♯ ‘ 𝑉 ) = 1 ∨ ( ♯ ‘ 𝑉 ) = 3 ) ) ) ) ) ) |
70 |
36 69
|
syl |
⊢ ( 𝐺 RegUSGraph 𝐾 → ( 𝐺 ∈ FriendGraph → ( ( 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) → ( 𝐾 = 0 → ( ( ( ¬ ( ♯ ‘ 𝑉 ) = 3 ∧ ¬ ( ♯ ‘ 𝑉 ) = 2 ) ∧ ( ♯ ‘ 𝑉 ) ∈ ( ℤ≥ ‘ 2 ) ) → ( ( ♯ ‘ 𝑉 ) = 0 ∨ ( ♯ ‘ 𝑉 ) = 1 ∨ ( ♯ ‘ 𝑉 ) = 3 ) ) ) ) ) ) |
71 |
70
|
impcom |
⊢ ( ( 𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾 ) → ( ( 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) → ( 𝐾 = 0 → ( ( ( ¬ ( ♯ ‘ 𝑉 ) = 3 ∧ ¬ ( ♯ ‘ 𝑉 ) = 2 ) ∧ ( ♯ ‘ 𝑉 ) ∈ ( ℤ≥ ‘ 2 ) ) → ( ( ♯ ‘ 𝑉 ) = 0 ∨ ( ♯ ‘ 𝑉 ) = 1 ∨ ( ♯ ‘ 𝑉 ) = 3 ) ) ) ) ) |
72 |
71
|
impcom |
⊢ ( ( ( 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) ∧ ( 𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾 ) ) → ( 𝐾 = 0 → ( ( ( ¬ ( ♯ ‘ 𝑉 ) = 3 ∧ ¬ ( ♯ ‘ 𝑉 ) = 2 ) ∧ ( ♯ ‘ 𝑉 ) ∈ ( ℤ≥ ‘ 2 ) ) → ( ( ♯ ‘ 𝑉 ) = 0 ∨ ( ♯ ‘ 𝑉 ) = 1 ∨ ( ♯ ‘ 𝑉 ) = 3 ) ) ) ) |
73 |
1
|
frrusgrord |
⊢ ( ( 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) → ( ( 𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾 ) → ( ♯ ‘ 𝑉 ) = ( ( 𝐾 · ( 𝐾 − 1 ) ) + 1 ) ) ) |
74 |
73
|
imp |
⊢ ( ( ( 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) ∧ ( 𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾 ) ) → ( ♯ ‘ 𝑉 ) = ( ( 𝐾 · ( 𝐾 − 1 ) ) + 1 ) ) |
75 |
|
id |
⊢ ( 𝐾 = 2 → 𝐾 = 2 ) |
76 |
|
oveq1 |
⊢ ( 𝐾 = 2 → ( 𝐾 − 1 ) = ( 2 − 1 ) ) |
77 |
75 76
|
oveq12d |
⊢ ( 𝐾 = 2 → ( 𝐾 · ( 𝐾 − 1 ) ) = ( 2 · ( 2 − 1 ) ) ) |
78 |
77
|
oveq1d |
⊢ ( 𝐾 = 2 → ( ( 𝐾 · ( 𝐾 − 1 ) ) + 1 ) = ( ( 2 · ( 2 − 1 ) ) + 1 ) ) |
79 |
|
2m1e1 |
⊢ ( 2 − 1 ) = 1 |
80 |
79
|
oveq2i |
⊢ ( 2 · ( 2 − 1 ) ) = ( 2 · 1 ) |
81 |
|
2t1e2 |
⊢ ( 2 · 1 ) = 2 |
82 |
80 81
|
eqtri |
⊢ ( 2 · ( 2 − 1 ) ) = 2 |
83 |
82
|
oveq1i |
⊢ ( ( 2 · ( 2 − 1 ) ) + 1 ) = ( 2 + 1 ) |
84 |
|
2p1e3 |
⊢ ( 2 + 1 ) = 3 |
85 |
83 84
|
eqtri |
⊢ ( ( 2 · ( 2 − 1 ) ) + 1 ) = 3 |
86 |
78 85
|
eqtrdi |
⊢ ( 𝐾 = 2 → ( ( 𝐾 · ( 𝐾 − 1 ) ) + 1 ) = 3 ) |
87 |
86
|
eqeq2d |
⊢ ( 𝐾 = 2 → ( ( ♯ ‘ 𝑉 ) = ( ( 𝐾 · ( 𝐾 − 1 ) ) + 1 ) ↔ ( ♯ ‘ 𝑉 ) = 3 ) ) |
88 |
|
pm2.21 |
⊢ ( ¬ ( ♯ ‘ 𝑉 ) = 3 → ( ( ♯ ‘ 𝑉 ) = 3 → ( ( ♯ ‘ 𝑉 ) = 0 ∨ ( ♯ ‘ 𝑉 ) = 1 ∨ ( ♯ ‘ 𝑉 ) = 3 ) ) ) |
89 |
88
|
ad2antrr |
⊢ ( ( ( ¬ ( ♯ ‘ 𝑉 ) = 3 ∧ ¬ ( ♯ ‘ 𝑉 ) = 2 ) ∧ ( ♯ ‘ 𝑉 ) ∈ ( ℤ≥ ‘ 2 ) ) → ( ( ♯ ‘ 𝑉 ) = 3 → ( ( ♯ ‘ 𝑉 ) = 0 ∨ ( ♯ ‘ 𝑉 ) = 1 ∨ ( ♯ ‘ 𝑉 ) = 3 ) ) ) |
90 |
89
|
com12 |
⊢ ( ( ♯ ‘ 𝑉 ) = 3 → ( ( ( ¬ ( ♯ ‘ 𝑉 ) = 3 ∧ ¬ ( ♯ ‘ 𝑉 ) = 2 ) ∧ ( ♯ ‘ 𝑉 ) ∈ ( ℤ≥ ‘ 2 ) ) → ( ( ♯ ‘ 𝑉 ) = 0 ∨ ( ♯ ‘ 𝑉 ) = 1 ∨ ( ♯ ‘ 𝑉 ) = 3 ) ) ) |
91 |
87 90
|
syl6bi |
⊢ ( 𝐾 = 2 → ( ( ♯ ‘ 𝑉 ) = ( ( 𝐾 · ( 𝐾 − 1 ) ) + 1 ) → ( ( ( ¬ ( ♯ ‘ 𝑉 ) = 3 ∧ ¬ ( ♯ ‘ 𝑉 ) = 2 ) ∧ ( ♯ ‘ 𝑉 ) ∈ ( ℤ≥ ‘ 2 ) ) → ( ( ♯ ‘ 𝑉 ) = 0 ∨ ( ♯ ‘ 𝑉 ) = 1 ∨ ( ♯ ‘ 𝑉 ) = 3 ) ) ) ) |
92 |
74 91
|
syl5com |
⊢ ( ( ( 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) ∧ ( 𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾 ) ) → ( 𝐾 = 2 → ( ( ( ¬ ( ♯ ‘ 𝑉 ) = 3 ∧ ¬ ( ♯ ‘ 𝑉 ) = 2 ) ∧ ( ♯ ‘ 𝑉 ) ∈ ( ℤ≥ ‘ 2 ) ) → ( ( ♯ ‘ 𝑉 ) = 0 ∨ ( ♯ ‘ 𝑉 ) = 1 ∨ ( ♯ ‘ 𝑉 ) = 3 ) ) ) ) |
93 |
1
|
frgrreg |
⊢ ( ( 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) → ( ( 𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾 ) → ( 𝐾 = 0 ∨ 𝐾 = 2 ) ) ) |
94 |
93
|
imp |
⊢ ( ( ( 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) ∧ ( 𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾 ) ) → ( 𝐾 = 0 ∨ 𝐾 = 2 ) ) |
95 |
72 92 94
|
mpjaod |
⊢ ( ( ( 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) ∧ ( 𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾 ) ) → ( ( ( ¬ ( ♯ ‘ 𝑉 ) = 3 ∧ ¬ ( ♯ ‘ 𝑉 ) = 2 ) ∧ ( ♯ ‘ 𝑉 ) ∈ ( ℤ≥ ‘ 2 ) ) → ( ( ♯ ‘ 𝑉 ) = 0 ∨ ( ♯ ‘ 𝑉 ) = 1 ∨ ( ♯ ‘ 𝑉 ) = 3 ) ) ) |
96 |
95
|
exp32 |
⊢ ( ( 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) → ( 𝐺 ∈ FriendGraph → ( 𝐺 RegUSGraph 𝐾 → ( ( ( ¬ ( ♯ ‘ 𝑉 ) = 3 ∧ ¬ ( ♯ ‘ 𝑉 ) = 2 ) ∧ ( ♯ ‘ 𝑉 ) ∈ ( ℤ≥ ‘ 2 ) ) → ( ( ♯ ‘ 𝑉 ) = 0 ∨ ( ♯ ‘ 𝑉 ) = 1 ∨ ( ♯ ‘ 𝑉 ) = 3 ) ) ) ) ) |
97 |
96
|
com34 |
⊢ ( ( 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) → ( 𝐺 ∈ FriendGraph → ( ( ( ¬ ( ♯ ‘ 𝑉 ) = 3 ∧ ¬ ( ♯ ‘ 𝑉 ) = 2 ) ∧ ( ♯ ‘ 𝑉 ) ∈ ( ℤ≥ ‘ 2 ) ) → ( 𝐺 RegUSGraph 𝐾 → ( ( ♯ ‘ 𝑉 ) = 0 ∨ ( ♯ ‘ 𝑉 ) = 1 ∨ ( ♯ ‘ 𝑉 ) = 3 ) ) ) ) ) |
98 |
97
|
com23 |
⊢ ( ( 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) → ( ( ( ¬ ( ♯ ‘ 𝑉 ) = 3 ∧ ¬ ( ♯ ‘ 𝑉 ) = 2 ) ∧ ( ♯ ‘ 𝑉 ) ∈ ( ℤ≥ ‘ 2 ) ) → ( 𝐺 ∈ FriendGraph → ( 𝐺 RegUSGraph 𝐾 → ( ( ♯ ‘ 𝑉 ) = 0 ∨ ( ♯ ‘ 𝑉 ) = 1 ∨ ( ♯ ‘ 𝑉 ) = 3 ) ) ) ) ) |
99 |
98
|
exp4c |
⊢ ( ( 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) → ( ¬ ( ♯ ‘ 𝑉 ) = 3 → ( ¬ ( ♯ ‘ 𝑉 ) = 2 → ( ( ♯ ‘ 𝑉 ) ∈ ( ℤ≥ ‘ 2 ) → ( 𝐺 ∈ FriendGraph → ( 𝐺 RegUSGraph 𝐾 → ( ( ♯ ‘ 𝑉 ) = 0 ∨ ( ♯ ‘ 𝑉 ) = 1 ∨ ( ♯ ‘ 𝑉 ) = 3 ) ) ) ) ) ) ) |
100 |
99
|
com34 |
⊢ ( ( 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) → ( ¬ ( ♯ ‘ 𝑉 ) = 3 → ( ( ♯ ‘ 𝑉 ) ∈ ( ℤ≥ ‘ 2 ) → ( ¬ ( ♯ ‘ 𝑉 ) = 2 → ( 𝐺 ∈ FriendGraph → ( 𝐺 RegUSGraph 𝐾 → ( ( ♯ ‘ 𝑉 ) = 0 ∨ ( ♯ ‘ 𝑉 ) = 1 ∨ ( ♯ ‘ 𝑉 ) = 3 ) ) ) ) ) ) ) |
101 |
100
|
com25 |
⊢ ( ( 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) → ( 𝐺 ∈ FriendGraph → ( ( ♯ ‘ 𝑉 ) ∈ ( ℤ≥ ‘ 2 ) → ( ¬ ( ♯ ‘ 𝑉 ) = 2 → ( ¬ ( ♯ ‘ 𝑉 ) = 3 → ( 𝐺 RegUSGraph 𝐾 → ( ( ♯ ‘ 𝑉 ) = 0 ∨ ( ♯ ‘ 𝑉 ) = 1 ∨ ( ♯ ‘ 𝑉 ) = 3 ) ) ) ) ) ) ) |
102 |
101
|
ex |
⊢ ( 𝑉 ∈ Fin → ( 𝑉 ≠ ∅ → ( 𝐺 ∈ FriendGraph → ( ( ♯ ‘ 𝑉 ) ∈ ( ℤ≥ ‘ 2 ) → ( ¬ ( ♯ ‘ 𝑉 ) = 2 → ( ¬ ( ♯ ‘ 𝑉 ) = 3 → ( 𝐺 RegUSGraph 𝐾 → ( ( ♯ ‘ 𝑉 ) = 0 ∨ ( ♯ ‘ 𝑉 ) = 1 ∨ ( ♯ ‘ 𝑉 ) = 3 ) ) ) ) ) ) ) ) |
103 |
102
|
com23 |
⊢ ( 𝑉 ∈ Fin → ( 𝐺 ∈ FriendGraph → ( 𝑉 ≠ ∅ → ( ( ♯ ‘ 𝑉 ) ∈ ( ℤ≥ ‘ 2 ) → ( ¬ ( ♯ ‘ 𝑉 ) = 2 → ( ¬ ( ♯ ‘ 𝑉 ) = 3 → ( 𝐺 RegUSGraph 𝐾 → ( ( ♯ ‘ 𝑉 ) = 0 ∨ ( ♯ ‘ 𝑉 ) = 1 ∨ ( ♯ ‘ 𝑉 ) = 3 ) ) ) ) ) ) ) ) |
104 |
103
|
com14 |
⊢ ( ( ♯ ‘ 𝑉 ) ∈ ( ℤ≥ ‘ 2 ) → ( 𝐺 ∈ FriendGraph → ( 𝑉 ≠ ∅ → ( 𝑉 ∈ Fin → ( ¬ ( ♯ ‘ 𝑉 ) = 2 → ( ¬ ( ♯ ‘ 𝑉 ) = 3 → ( 𝐺 RegUSGraph 𝐾 → ( ( ♯ ‘ 𝑉 ) = 0 ∨ ( ♯ ‘ 𝑉 ) = 1 ∨ ( ♯ ‘ 𝑉 ) = 3 ) ) ) ) ) ) ) ) |
105 |
104
|
3imp |
⊢ ( ( ( ♯ ‘ 𝑉 ) ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐺 ∈ FriendGraph ∧ 𝑉 ≠ ∅ ) → ( 𝑉 ∈ Fin → ( ¬ ( ♯ ‘ 𝑉 ) = 2 → ( ¬ ( ♯ ‘ 𝑉 ) = 3 → ( 𝐺 RegUSGraph 𝐾 → ( ( ♯ ‘ 𝑉 ) = 0 ∨ ( ♯ ‘ 𝑉 ) = 1 ∨ ( ♯ ‘ 𝑉 ) = 3 ) ) ) ) ) ) |
106 |
105
|
com3r |
⊢ ( ¬ ( ♯ ‘ 𝑉 ) = 2 → ( ( ( ♯ ‘ 𝑉 ) ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐺 ∈ FriendGraph ∧ 𝑉 ≠ ∅ ) → ( 𝑉 ∈ Fin → ( ¬ ( ♯ ‘ 𝑉 ) = 3 → ( 𝐺 RegUSGraph 𝐾 → ( ( ♯ ‘ 𝑉 ) = 0 ∨ ( ♯ ‘ 𝑉 ) = 1 ∨ ( ♯ ‘ 𝑉 ) = 3 ) ) ) ) ) ) |
107 |
34 106
|
pm2.61i |
⊢ ( ( ( ♯ ‘ 𝑉 ) ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐺 ∈ FriendGraph ∧ 𝑉 ≠ ∅ ) → ( 𝑉 ∈ Fin → ( ¬ ( ♯ ‘ 𝑉 ) = 3 → ( 𝐺 RegUSGraph 𝐾 → ( ( ♯ ‘ 𝑉 ) = 0 ∨ ( ♯ ‘ 𝑉 ) = 1 ∨ ( ♯ ‘ 𝑉 ) = 3 ) ) ) ) ) |
108 |
107
|
3exp |
⊢ ( ( ♯ ‘ 𝑉 ) ∈ ( ℤ≥ ‘ 2 ) → ( 𝐺 ∈ FriendGraph → ( 𝑉 ≠ ∅ → ( 𝑉 ∈ Fin → ( ¬ ( ♯ ‘ 𝑉 ) = 3 → ( 𝐺 RegUSGraph 𝐾 → ( ( ♯ ‘ 𝑉 ) = 0 ∨ ( ♯ ‘ 𝑉 ) = 1 ∨ ( ♯ ‘ 𝑉 ) = 3 ) ) ) ) ) ) ) |
109 |
11 108
|
sylbir |
⊢ ( ( ( ♯ ‘ 𝑉 ) ∈ ℕ ∧ ( ♯ ‘ 𝑉 ) ≠ 1 ) → ( 𝐺 ∈ FriendGraph → ( 𝑉 ≠ ∅ → ( 𝑉 ∈ Fin → ( ¬ ( ♯ ‘ 𝑉 ) = 3 → ( 𝐺 RegUSGraph 𝐾 → ( ( ♯ ‘ 𝑉 ) = 0 ∨ ( ♯ ‘ 𝑉 ) = 1 ∨ ( ♯ ‘ 𝑉 ) = 3 ) ) ) ) ) ) ) |
110 |
109
|
ex |
⊢ ( ( ♯ ‘ 𝑉 ) ∈ ℕ → ( ( ♯ ‘ 𝑉 ) ≠ 1 → ( 𝐺 ∈ FriendGraph → ( 𝑉 ≠ ∅ → ( 𝑉 ∈ Fin → ( ¬ ( ♯ ‘ 𝑉 ) = 3 → ( 𝐺 RegUSGraph 𝐾 → ( ( ♯ ‘ 𝑉 ) = 0 ∨ ( ♯ ‘ 𝑉 ) = 1 ∨ ( ♯ ‘ 𝑉 ) = 3 ) ) ) ) ) ) ) ) |
111 |
10 110
|
syl5bir |
⊢ ( ( ♯ ‘ 𝑉 ) ∈ ℕ → ( ¬ ( ♯ ‘ 𝑉 ) = 1 → ( 𝐺 ∈ FriendGraph → ( 𝑉 ≠ ∅ → ( 𝑉 ∈ Fin → ( ¬ ( ♯ ‘ 𝑉 ) = 3 → ( 𝐺 RegUSGraph 𝐾 → ( ( ♯ ‘ 𝑉 ) = 0 ∨ ( ♯ ‘ 𝑉 ) = 1 ∨ ( ♯ ‘ 𝑉 ) = 3 ) ) ) ) ) ) ) ) |
112 |
111
|
com25 |
⊢ ( ( ♯ ‘ 𝑉 ) ∈ ℕ → ( 𝑉 ∈ Fin → ( 𝐺 ∈ FriendGraph → ( 𝑉 ≠ ∅ → ( ¬ ( ♯ ‘ 𝑉 ) = 1 → ( ¬ ( ♯ ‘ 𝑉 ) = 3 → ( 𝐺 RegUSGraph 𝐾 → ( ( ♯ ‘ 𝑉 ) = 0 ∨ ( ♯ ‘ 𝑉 ) = 1 ∨ ( ♯ ‘ 𝑉 ) = 3 ) ) ) ) ) ) ) ) |
113 |
9 112
|
sylbir |
⊢ ( ( ( ♯ ‘ 𝑉 ) ∈ ℕ0 ∧ ( ♯ ‘ 𝑉 ) ≠ 0 ) → ( 𝑉 ∈ Fin → ( 𝐺 ∈ FriendGraph → ( 𝑉 ≠ ∅ → ( ¬ ( ♯ ‘ 𝑉 ) = 1 → ( ¬ ( ♯ ‘ 𝑉 ) = 3 → ( 𝐺 RegUSGraph 𝐾 → ( ( ♯ ‘ 𝑉 ) = 0 ∨ ( ♯ ‘ 𝑉 ) = 1 ∨ ( ♯ ‘ 𝑉 ) = 3 ) ) ) ) ) ) ) ) |
114 |
113
|
ex |
⊢ ( ( ♯ ‘ 𝑉 ) ∈ ℕ0 → ( ( ♯ ‘ 𝑉 ) ≠ 0 → ( 𝑉 ∈ Fin → ( 𝐺 ∈ FriendGraph → ( 𝑉 ≠ ∅ → ( ¬ ( ♯ ‘ 𝑉 ) = 1 → ( ¬ ( ♯ ‘ 𝑉 ) = 3 → ( 𝐺 RegUSGraph 𝐾 → ( ( ♯ ‘ 𝑉 ) = 0 ∨ ( ♯ ‘ 𝑉 ) = 1 ∨ ( ♯ ‘ 𝑉 ) = 3 ) ) ) ) ) ) ) ) ) |
115 |
114
|
impcomd |
⊢ ( ( ♯ ‘ 𝑉 ) ∈ ℕ0 → ( ( 𝑉 ∈ Fin ∧ ( ♯ ‘ 𝑉 ) ≠ 0 ) → ( 𝐺 ∈ FriendGraph → ( 𝑉 ≠ ∅ → ( ¬ ( ♯ ‘ 𝑉 ) = 1 → ( ¬ ( ♯ ‘ 𝑉 ) = 3 → ( 𝐺 RegUSGraph 𝐾 → ( ( ♯ ‘ 𝑉 ) = 0 ∨ ( ♯ ‘ 𝑉 ) = 1 ∨ ( ♯ ‘ 𝑉 ) = 3 ) ) ) ) ) ) ) ) |
116 |
115
|
com14 |
⊢ ( 𝑉 ≠ ∅ → ( ( 𝑉 ∈ Fin ∧ ( ♯ ‘ 𝑉 ) ≠ 0 ) → ( 𝐺 ∈ FriendGraph → ( ( ♯ ‘ 𝑉 ) ∈ ℕ0 → ( ¬ ( ♯ ‘ 𝑉 ) = 1 → ( ¬ ( ♯ ‘ 𝑉 ) = 3 → ( 𝐺 RegUSGraph 𝐾 → ( ( ♯ ‘ 𝑉 ) = 0 ∨ ( ♯ ‘ 𝑉 ) = 1 ∨ ( ♯ ‘ 𝑉 ) = 3 ) ) ) ) ) ) ) ) |
117 |
8 116
|
mpcom |
⊢ ( ( 𝑉 ∈ Fin ∧ ( ♯ ‘ 𝑉 ) ≠ 0 ) → ( 𝐺 ∈ FriendGraph → ( ( ♯ ‘ 𝑉 ) ∈ ℕ0 → ( ¬ ( ♯ ‘ 𝑉 ) = 1 → ( ¬ ( ♯ ‘ 𝑉 ) = 3 → ( 𝐺 RegUSGraph 𝐾 → ( ( ♯ ‘ 𝑉 ) = 0 ∨ ( ♯ ‘ 𝑉 ) = 1 ∨ ( ♯ ‘ 𝑉 ) = 3 ) ) ) ) ) ) ) |
118 |
117
|
ex |
⊢ ( 𝑉 ∈ Fin → ( ( ♯ ‘ 𝑉 ) ≠ 0 → ( 𝐺 ∈ FriendGraph → ( ( ♯ ‘ 𝑉 ) ∈ ℕ0 → ( ¬ ( ♯ ‘ 𝑉 ) = 1 → ( ¬ ( ♯ ‘ 𝑉 ) = 3 → ( 𝐺 RegUSGraph 𝐾 → ( ( ♯ ‘ 𝑉 ) = 0 ∨ ( ♯ ‘ 𝑉 ) = 1 ∨ ( ♯ ‘ 𝑉 ) = 3 ) ) ) ) ) ) ) ) |
119 |
118
|
com14 |
⊢ ( ( ♯ ‘ 𝑉 ) ∈ ℕ0 → ( ( ♯ ‘ 𝑉 ) ≠ 0 → ( 𝐺 ∈ FriendGraph → ( 𝑉 ∈ Fin → ( ¬ ( ♯ ‘ 𝑉 ) = 1 → ( ¬ ( ♯ ‘ 𝑉 ) = 3 → ( 𝐺 RegUSGraph 𝐾 → ( ( ♯ ‘ 𝑉 ) = 0 ∨ ( ♯ ‘ 𝑉 ) = 1 ∨ ( ♯ ‘ 𝑉 ) = 3 ) ) ) ) ) ) ) ) |
120 |
5 119
|
syl5bir |
⊢ ( ( ♯ ‘ 𝑉 ) ∈ ℕ0 → ( ¬ ( ♯ ‘ 𝑉 ) = 0 → ( 𝐺 ∈ FriendGraph → ( 𝑉 ∈ Fin → ( ¬ ( ♯ ‘ 𝑉 ) = 1 → ( ¬ ( ♯ ‘ 𝑉 ) = 3 → ( 𝐺 RegUSGraph 𝐾 → ( ( ♯ ‘ 𝑉 ) = 0 ∨ ( ♯ ‘ 𝑉 ) = 1 ∨ ( ♯ ‘ 𝑉 ) = 3 ) ) ) ) ) ) ) ) |
121 |
120
|
com24 |
⊢ ( ( ♯ ‘ 𝑉 ) ∈ ℕ0 → ( 𝑉 ∈ Fin → ( 𝐺 ∈ FriendGraph → ( ¬ ( ♯ ‘ 𝑉 ) = 0 → ( ¬ ( ♯ ‘ 𝑉 ) = 1 → ( ¬ ( ♯ ‘ 𝑉 ) = 3 → ( 𝐺 RegUSGraph 𝐾 → ( ( ♯ ‘ 𝑉 ) = 0 ∨ ( ♯ ‘ 𝑉 ) = 1 ∨ ( ♯ ‘ 𝑉 ) = 3 ) ) ) ) ) ) ) ) |
122 |
121
|
3imp |
⊢ ( ( ( ♯ ‘ 𝑉 ) ∈ ℕ0 ∧ 𝑉 ∈ Fin ∧ 𝐺 ∈ FriendGraph ) → ( ¬ ( ♯ ‘ 𝑉 ) = 0 → ( ¬ ( ♯ ‘ 𝑉 ) = 1 → ( ¬ ( ♯ ‘ 𝑉 ) = 3 → ( 𝐺 RegUSGraph 𝐾 → ( ( ♯ ‘ 𝑉 ) = 0 ∨ ( ♯ ‘ 𝑉 ) = 1 ∨ ( ♯ ‘ 𝑉 ) = 3 ) ) ) ) ) ) |
123 |
122
|
com25 |
⊢ ( ( ( ♯ ‘ 𝑉 ) ∈ ℕ0 ∧ 𝑉 ∈ Fin ∧ 𝐺 ∈ FriendGraph ) → ( 𝐺 RegUSGraph 𝐾 → ( ¬ ( ♯ ‘ 𝑉 ) = 1 → ( ¬ ( ♯ ‘ 𝑉 ) = 3 → ( ¬ ( ♯ ‘ 𝑉 ) = 0 → ( ( ♯ ‘ 𝑉 ) = 0 ∨ ( ♯ ‘ 𝑉 ) = 1 ∨ ( ♯ ‘ 𝑉 ) = 3 ) ) ) ) ) ) |
124 |
123
|
imp |
⊢ ( ( ( ( ♯ ‘ 𝑉 ) ∈ ℕ0 ∧ 𝑉 ∈ Fin ∧ 𝐺 ∈ FriendGraph ) ∧ 𝐺 RegUSGraph 𝐾 ) → ( ¬ ( ♯ ‘ 𝑉 ) = 1 → ( ¬ ( ♯ ‘ 𝑉 ) = 3 → ( ¬ ( ♯ ‘ 𝑉 ) = 0 → ( ( ♯ ‘ 𝑉 ) = 0 ∨ ( ♯ ‘ 𝑉 ) = 1 ∨ ( ♯ ‘ 𝑉 ) = 3 ) ) ) ) ) |
125 |
124
|
com14 |
⊢ ( ¬ ( ♯ ‘ 𝑉 ) = 0 → ( ¬ ( ♯ ‘ 𝑉 ) = 1 → ( ¬ ( ♯ ‘ 𝑉 ) = 3 → ( ( ( ( ♯ ‘ 𝑉 ) ∈ ℕ0 ∧ 𝑉 ∈ Fin ∧ 𝐺 ∈ FriendGraph ) ∧ 𝐺 RegUSGraph 𝐾 ) → ( ( ♯ ‘ 𝑉 ) = 0 ∨ ( ♯ ‘ 𝑉 ) = 1 ∨ ( ♯ ‘ 𝑉 ) = 3 ) ) ) ) ) |
126 |
125
|
3imp |
⊢ ( ( ¬ ( ♯ ‘ 𝑉 ) = 0 ∧ ¬ ( ♯ ‘ 𝑉 ) = 1 ∧ ¬ ( ♯ ‘ 𝑉 ) = 3 ) → ( ( ( ( ♯ ‘ 𝑉 ) ∈ ℕ0 ∧ 𝑉 ∈ Fin ∧ 𝐺 ∈ FriendGraph ) ∧ 𝐺 RegUSGraph 𝐾 ) → ( ( ♯ ‘ 𝑉 ) = 0 ∨ ( ♯ ‘ 𝑉 ) = 1 ∨ ( ♯ ‘ 𝑉 ) = 3 ) ) ) |
127 |
4 126
|
sylbi |
⊢ ( ¬ ( ( ♯ ‘ 𝑉 ) = 0 ∨ ( ♯ ‘ 𝑉 ) = 1 ∨ ( ♯ ‘ 𝑉 ) = 3 ) → ( ( ( ( ♯ ‘ 𝑉 ) ∈ ℕ0 ∧ 𝑉 ∈ Fin ∧ 𝐺 ∈ FriendGraph ) ∧ 𝐺 RegUSGraph 𝐾 ) → ( ( ♯ ‘ 𝑉 ) = 0 ∨ ( ♯ ‘ 𝑉 ) = 1 ∨ ( ♯ ‘ 𝑉 ) = 3 ) ) ) |
128 |
3 127
|
pm2.61i |
⊢ ( ( ( ( ♯ ‘ 𝑉 ) ∈ ℕ0 ∧ 𝑉 ∈ Fin ∧ 𝐺 ∈ FriendGraph ) ∧ 𝐺 RegUSGraph 𝐾 ) → ( ( ♯ ‘ 𝑉 ) = 0 ∨ ( ♯ ‘ 𝑉 ) = 1 ∨ ( ♯ ‘ 𝑉 ) = 3 ) ) |
129 |
128
|
3exp1 |
⊢ ( ( ♯ ‘ 𝑉 ) ∈ ℕ0 → ( 𝑉 ∈ Fin → ( 𝐺 ∈ FriendGraph → ( 𝐺 RegUSGraph 𝐾 → ( ( ♯ ‘ 𝑉 ) = 0 ∨ ( ♯ ‘ 𝑉 ) = 1 ∨ ( ♯ ‘ 𝑉 ) = 3 ) ) ) ) ) |
130 |
2 129
|
mpcom |
⊢ ( 𝑉 ∈ Fin → ( 𝐺 ∈ FriendGraph → ( 𝐺 RegUSGraph 𝐾 → ( ( ♯ ‘ 𝑉 ) = 0 ∨ ( ♯ ‘ 𝑉 ) = 1 ∨ ( ♯ ‘ 𝑉 ) = 3 ) ) ) ) |
131 |
130
|
3imp21 |
⊢ ( ( 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾 ) → ( ( ♯ ‘ 𝑉 ) = 0 ∨ ( ♯ ‘ 𝑉 ) = 1 ∨ ( ♯ ‘ 𝑉 ) = 3 ) ) |