| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							frgrreggt1.v | 
							⊢ 𝑉  =  ( Vtx ‘ 𝐺 )  | 
						
						
							| 2 | 
							
								
							 | 
							simpl1 | 
							⊢ ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  ∧  𝐺  RegUSGraph  𝐾 )  →  𝐺  ∈   FriendGraph  )  | 
						
						
							| 3 | 
							
								
							 | 
							simpl2 | 
							⊢ ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  ∧  𝐺  RegUSGraph  𝐾 )  →  𝑉  ∈  Fin )  | 
						
						
							| 4 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  ∧  𝐺  RegUSGraph  𝐾 )  →  𝐺  RegUSGraph  𝐾 )  | 
						
						
							| 5 | 
							
								1
							 | 
							frgrregord013 | 
							⊢ ( ( 𝐺  ∈   FriendGraph   ∧  𝑉  ∈  Fin  ∧  𝐺  RegUSGraph  𝐾 )  →  ( ( ♯ ‘ 𝑉 )  =  0  ∨  ( ♯ ‘ 𝑉 )  =  1  ∨  ( ♯ ‘ 𝑉 )  =  3 ) )  | 
						
						
							| 6 | 
							
								2 3 4 5
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  ∧  𝐺  RegUSGraph  𝐾 )  →  ( ( ♯ ‘ 𝑉 )  =  0  ∨  ( ♯ ‘ 𝑉 )  =  1  ∨  ( ♯ ‘ 𝑉 )  =  3 ) )  | 
						
						
							| 7 | 
							
								
							 | 
							hasheq0 | 
							⊢ ( 𝑉  ∈  Fin  →  ( ( ♯ ‘ 𝑉 )  =  0  ↔  𝑉  =  ∅ ) )  | 
						
						
							| 8 | 
							
								
							 | 
							eqneqall | 
							⊢ ( 𝑉  =  ∅  →  ( 𝑉  ≠  ∅  →  ( ( ♯ ‘ 𝑉 )  =  1  ∨  ( ♯ ‘ 𝑉 )  =  3 ) ) )  | 
						
						
							| 9 | 
							
								7 8
							 | 
							biimtrdi | 
							⊢ ( 𝑉  ∈  Fin  →  ( ( ♯ ‘ 𝑉 )  =  0  →  ( 𝑉  ≠  ∅  →  ( ( ♯ ‘ 𝑉 )  =  1  ∨  ( ♯ ‘ 𝑉 )  =  3 ) ) ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							com23 | 
							⊢ ( 𝑉  ∈  Fin  →  ( 𝑉  ≠  ∅  →  ( ( ♯ ‘ 𝑉 )  =  0  →  ( ( ♯ ‘ 𝑉 )  =  1  ∨  ( ♯ ‘ 𝑉 )  =  3 ) ) ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							a1i | 
							⊢ ( 𝐺  ∈   FriendGraph   →  ( 𝑉  ∈  Fin  →  ( 𝑉  ≠  ∅  →  ( ( ♯ ‘ 𝑉 )  =  0  →  ( ( ♯ ‘ 𝑉 )  =  1  ∨  ( ♯ ‘ 𝑉 )  =  3 ) ) ) ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							3imp | 
							⊢ ( ( 𝐺  ∈   FriendGraph   ∧  𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  →  ( ( ♯ ‘ 𝑉 )  =  0  →  ( ( ♯ ‘ 𝑉 )  =  1  ∨  ( ♯ ‘ 𝑉 )  =  3 ) ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							adantr | 
							⊢ ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  ∧  𝐺  RegUSGraph  𝐾 )  →  ( ( ♯ ‘ 𝑉 )  =  0  →  ( ( ♯ ‘ 𝑉 )  =  1  ∨  ( ♯ ‘ 𝑉 )  =  3 ) ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							com12 | 
							⊢ ( ( ♯ ‘ 𝑉 )  =  0  →  ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  ∧  𝐺  RegUSGraph  𝐾 )  →  ( ( ♯ ‘ 𝑉 )  =  1  ∨  ( ♯ ‘ 𝑉 )  =  3 ) ) )  | 
						
						
							| 15 | 
							
								
							 | 
							orc | 
							⊢ ( ( ♯ ‘ 𝑉 )  =  1  →  ( ( ♯ ‘ 𝑉 )  =  1  ∨  ( ♯ ‘ 𝑉 )  =  3 ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							a1d | 
							⊢ ( ( ♯ ‘ 𝑉 )  =  1  →  ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  ∧  𝐺  RegUSGraph  𝐾 )  →  ( ( ♯ ‘ 𝑉 )  =  1  ∨  ( ♯ ‘ 𝑉 )  =  3 ) ) )  | 
						
						
							| 17 | 
							
								
							 | 
							olc | 
							⊢ ( ( ♯ ‘ 𝑉 )  =  3  →  ( ( ♯ ‘ 𝑉 )  =  1  ∨  ( ♯ ‘ 𝑉 )  =  3 ) )  | 
						
						
							| 18 | 
							
								17
							 | 
							a1d | 
							⊢ ( ( ♯ ‘ 𝑉 )  =  3  →  ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  ∧  𝐺  RegUSGraph  𝐾 )  →  ( ( ♯ ‘ 𝑉 )  =  1  ∨  ( ♯ ‘ 𝑉 )  =  3 ) ) )  | 
						
						
							| 19 | 
							
								14 16 18
							 | 
							3jaoi | 
							⊢ ( ( ( ♯ ‘ 𝑉 )  =  0  ∨  ( ♯ ‘ 𝑉 )  =  1  ∨  ( ♯ ‘ 𝑉 )  =  3 )  →  ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  ∧  𝐺  RegUSGraph  𝐾 )  →  ( ( ♯ ‘ 𝑉 )  =  1  ∨  ( ♯ ‘ 𝑉 )  =  3 ) ) )  | 
						
						
							| 20 | 
							
								6 19
							 | 
							mpcom | 
							⊢ ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  ∧  𝐺  RegUSGraph  𝐾 )  →  ( ( ♯ ‘ 𝑉 )  =  1  ∨  ( ♯ ‘ 𝑉 )  =  3 ) )  |