| Step | Hyp | Ref | Expression | 
						
							| 1 |  | frgrregorufr0.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | frgrregorufr0.e | ⊢ 𝐸  =  ( Edg ‘ 𝐺 ) | 
						
							| 3 |  | frgrregorufr0.d | ⊢ 𝐷  =  ( VtxDeg ‘ 𝐺 ) | 
						
							| 4 | 1 2 3 | frgrregorufr0 | ⊢ ( 𝐺  ∈   FriendGraph   →  ( ∀ 𝑣  ∈  𝑉 ( 𝐷 ‘ 𝑣 )  =  𝐾  ∨  ∀ 𝑣  ∈  𝑉 ( 𝐷 ‘ 𝑣 )  ≠  𝐾  ∨  ∃ 𝑣  ∈  𝑉 ∀ 𝑤  ∈  ( 𝑉  ∖  { 𝑣 } ) { 𝑣 ,  𝑤 }  ∈  𝐸 ) ) | 
						
							| 5 |  | orc | ⊢ ( ∀ 𝑣  ∈  𝑉 ( 𝐷 ‘ 𝑣 )  =  𝐾  →  ( ∀ 𝑣  ∈  𝑉 ( 𝐷 ‘ 𝑣 )  =  𝐾  ∨  ∃ 𝑣  ∈  𝑉 ∀ 𝑤  ∈  ( 𝑉  ∖  { 𝑣 } ) { 𝑣 ,  𝑤 }  ∈  𝐸 ) ) | 
						
							| 6 | 5 | a1d | ⊢ ( ∀ 𝑣  ∈  𝑉 ( 𝐷 ‘ 𝑣 )  =  𝐾  →  ( ∃ 𝑎  ∈  𝑉 ( 𝐷 ‘ 𝑎 )  =  𝐾  →  ( ∀ 𝑣  ∈  𝑉 ( 𝐷 ‘ 𝑣 )  =  𝐾  ∨  ∃ 𝑣  ∈  𝑉 ∀ 𝑤  ∈  ( 𝑉  ∖  { 𝑣 } ) { 𝑣 ,  𝑤 }  ∈  𝐸 ) ) ) | 
						
							| 7 |  | fveq2 | ⊢ ( 𝑣  =  𝑎  →  ( 𝐷 ‘ 𝑣 )  =  ( 𝐷 ‘ 𝑎 ) ) | 
						
							| 8 | 7 | neeq1d | ⊢ ( 𝑣  =  𝑎  →  ( ( 𝐷 ‘ 𝑣 )  ≠  𝐾  ↔  ( 𝐷 ‘ 𝑎 )  ≠  𝐾 ) ) | 
						
							| 9 | 8 | rspcva | ⊢ ( ( 𝑎  ∈  𝑉  ∧  ∀ 𝑣  ∈  𝑉 ( 𝐷 ‘ 𝑣 )  ≠  𝐾 )  →  ( 𝐷 ‘ 𝑎 )  ≠  𝐾 ) | 
						
							| 10 |  | df-ne | ⊢ ( ( 𝐷 ‘ 𝑎 )  ≠  𝐾  ↔  ¬  ( 𝐷 ‘ 𝑎 )  =  𝐾 ) | 
						
							| 11 |  | pm2.21 | ⊢ ( ¬  ( 𝐷 ‘ 𝑎 )  =  𝐾  →  ( ( 𝐷 ‘ 𝑎 )  =  𝐾  →  ( ∀ 𝑣  ∈  𝑉 ( 𝐷 ‘ 𝑣 )  =  𝐾  ∨  ∃ 𝑣  ∈  𝑉 ∀ 𝑤  ∈  ( 𝑉  ∖  { 𝑣 } ) { 𝑣 ,  𝑤 }  ∈  𝐸 ) ) ) | 
						
							| 12 | 10 11 | sylbi | ⊢ ( ( 𝐷 ‘ 𝑎 )  ≠  𝐾  →  ( ( 𝐷 ‘ 𝑎 )  =  𝐾  →  ( ∀ 𝑣  ∈  𝑉 ( 𝐷 ‘ 𝑣 )  =  𝐾  ∨  ∃ 𝑣  ∈  𝑉 ∀ 𝑤  ∈  ( 𝑉  ∖  { 𝑣 } ) { 𝑣 ,  𝑤 }  ∈  𝐸 ) ) ) | 
						
							| 13 | 9 12 | syl | ⊢ ( ( 𝑎  ∈  𝑉  ∧  ∀ 𝑣  ∈  𝑉 ( 𝐷 ‘ 𝑣 )  ≠  𝐾 )  →  ( ( 𝐷 ‘ 𝑎 )  =  𝐾  →  ( ∀ 𝑣  ∈  𝑉 ( 𝐷 ‘ 𝑣 )  =  𝐾  ∨  ∃ 𝑣  ∈  𝑉 ∀ 𝑤  ∈  ( 𝑉  ∖  { 𝑣 } ) { 𝑣 ,  𝑤 }  ∈  𝐸 ) ) ) | 
						
							| 14 | 13 | ancoms | ⊢ ( ( ∀ 𝑣  ∈  𝑉 ( 𝐷 ‘ 𝑣 )  ≠  𝐾  ∧  𝑎  ∈  𝑉 )  →  ( ( 𝐷 ‘ 𝑎 )  =  𝐾  →  ( ∀ 𝑣  ∈  𝑉 ( 𝐷 ‘ 𝑣 )  =  𝐾  ∨  ∃ 𝑣  ∈  𝑉 ∀ 𝑤  ∈  ( 𝑉  ∖  { 𝑣 } ) { 𝑣 ,  𝑤 }  ∈  𝐸 ) ) ) | 
						
							| 15 | 14 | rexlimdva | ⊢ ( ∀ 𝑣  ∈  𝑉 ( 𝐷 ‘ 𝑣 )  ≠  𝐾  →  ( ∃ 𝑎  ∈  𝑉 ( 𝐷 ‘ 𝑎 )  =  𝐾  →  ( ∀ 𝑣  ∈  𝑉 ( 𝐷 ‘ 𝑣 )  =  𝐾  ∨  ∃ 𝑣  ∈  𝑉 ∀ 𝑤  ∈  ( 𝑉  ∖  { 𝑣 } ) { 𝑣 ,  𝑤 }  ∈  𝐸 ) ) ) | 
						
							| 16 |  | olc | ⊢ ( ∃ 𝑣  ∈  𝑉 ∀ 𝑤  ∈  ( 𝑉  ∖  { 𝑣 } ) { 𝑣 ,  𝑤 }  ∈  𝐸  →  ( ∀ 𝑣  ∈  𝑉 ( 𝐷 ‘ 𝑣 )  =  𝐾  ∨  ∃ 𝑣  ∈  𝑉 ∀ 𝑤  ∈  ( 𝑉  ∖  { 𝑣 } ) { 𝑣 ,  𝑤 }  ∈  𝐸 ) ) | 
						
							| 17 | 16 | a1d | ⊢ ( ∃ 𝑣  ∈  𝑉 ∀ 𝑤  ∈  ( 𝑉  ∖  { 𝑣 } ) { 𝑣 ,  𝑤 }  ∈  𝐸  →  ( ∃ 𝑎  ∈  𝑉 ( 𝐷 ‘ 𝑎 )  =  𝐾  →  ( ∀ 𝑣  ∈  𝑉 ( 𝐷 ‘ 𝑣 )  =  𝐾  ∨  ∃ 𝑣  ∈  𝑉 ∀ 𝑤  ∈  ( 𝑉  ∖  { 𝑣 } ) { 𝑣 ,  𝑤 }  ∈  𝐸 ) ) ) | 
						
							| 18 | 6 15 17 | 3jaoi | ⊢ ( ( ∀ 𝑣  ∈  𝑉 ( 𝐷 ‘ 𝑣 )  =  𝐾  ∨  ∀ 𝑣  ∈  𝑉 ( 𝐷 ‘ 𝑣 )  ≠  𝐾  ∨  ∃ 𝑣  ∈  𝑉 ∀ 𝑤  ∈  ( 𝑉  ∖  { 𝑣 } ) { 𝑣 ,  𝑤 }  ∈  𝐸 )  →  ( ∃ 𝑎  ∈  𝑉 ( 𝐷 ‘ 𝑎 )  =  𝐾  →  ( ∀ 𝑣  ∈  𝑉 ( 𝐷 ‘ 𝑣 )  =  𝐾  ∨  ∃ 𝑣  ∈  𝑉 ∀ 𝑤  ∈  ( 𝑉  ∖  { 𝑣 } ) { 𝑣 ,  𝑤 }  ∈  𝐸 ) ) ) | 
						
							| 19 | 4 18 | syl | ⊢ ( 𝐺  ∈   FriendGraph   →  ( ∃ 𝑎  ∈  𝑉 ( 𝐷 ‘ 𝑎 )  =  𝐾  →  ( ∀ 𝑣  ∈  𝑉 ( 𝐷 ‘ 𝑣 )  =  𝐾  ∨  ∃ 𝑣  ∈  𝑉 ∀ 𝑤  ∈  ( 𝑉  ∖  { 𝑣 } ) { 𝑣 ,  𝑤 }  ∈  𝐸 ) ) ) |