Step |
Hyp |
Ref |
Expression |
1 |
|
frgrregorufr0.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
frgrregorufr0.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
3 |
|
frgrregorufr0.d |
⊢ 𝐷 = ( VtxDeg ‘ 𝐺 ) |
4 |
|
fveqeq2 |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐷 ‘ 𝑥 ) = 𝐾 ↔ ( 𝐷 ‘ 𝑦 ) = 𝐾 ) ) |
5 |
4
|
cbvrabv |
⊢ { 𝑥 ∈ 𝑉 ∣ ( 𝐷 ‘ 𝑥 ) = 𝐾 } = { 𝑦 ∈ 𝑉 ∣ ( 𝐷 ‘ 𝑦 ) = 𝐾 } |
6 |
|
eqid |
⊢ ( 𝑉 ∖ { 𝑥 ∈ 𝑉 ∣ ( 𝐷 ‘ 𝑥 ) = 𝐾 } ) = ( 𝑉 ∖ { 𝑥 ∈ 𝑉 ∣ ( 𝐷 ‘ 𝑥 ) = 𝐾 } ) |
7 |
1 3 5 6
|
frgrwopreg |
⊢ ( 𝐺 ∈ FriendGraph → ( ( ( ♯ ‘ { 𝑥 ∈ 𝑉 ∣ ( 𝐷 ‘ 𝑥 ) = 𝐾 } ) = 1 ∨ { 𝑥 ∈ 𝑉 ∣ ( 𝐷 ‘ 𝑥 ) = 𝐾 } = ∅ ) ∨ ( ( ♯ ‘ ( 𝑉 ∖ { 𝑥 ∈ 𝑉 ∣ ( 𝐷 ‘ 𝑥 ) = 𝐾 } ) ) = 1 ∨ ( 𝑉 ∖ { 𝑥 ∈ 𝑉 ∣ ( 𝐷 ‘ 𝑥 ) = 𝐾 } ) = ∅ ) ) ) |
8 |
1 3 5 6 2
|
frgrwopreg1 |
⊢ ( ( 𝐺 ∈ FriendGraph ∧ ( ♯ ‘ { 𝑥 ∈ 𝑉 ∣ ( 𝐷 ‘ 𝑥 ) = 𝐾 } ) = 1 ) → ∃ 𝑣 ∈ 𝑉 ∀ 𝑤 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑣 , 𝑤 } ∈ 𝐸 ) |
9 |
8
|
3mix3d |
⊢ ( ( 𝐺 ∈ FriendGraph ∧ ( ♯ ‘ { 𝑥 ∈ 𝑉 ∣ ( 𝐷 ‘ 𝑥 ) = 𝐾 } ) = 1 ) → ( ∀ 𝑣 ∈ 𝑉 ( 𝐷 ‘ 𝑣 ) = 𝐾 ∨ ∀ 𝑣 ∈ 𝑉 ( 𝐷 ‘ 𝑣 ) ≠ 𝐾 ∨ ∃ 𝑣 ∈ 𝑉 ∀ 𝑤 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑣 , 𝑤 } ∈ 𝐸 ) ) |
10 |
9
|
expcom |
⊢ ( ( ♯ ‘ { 𝑥 ∈ 𝑉 ∣ ( 𝐷 ‘ 𝑥 ) = 𝐾 } ) = 1 → ( 𝐺 ∈ FriendGraph → ( ∀ 𝑣 ∈ 𝑉 ( 𝐷 ‘ 𝑣 ) = 𝐾 ∨ ∀ 𝑣 ∈ 𝑉 ( 𝐷 ‘ 𝑣 ) ≠ 𝐾 ∨ ∃ 𝑣 ∈ 𝑉 ∀ 𝑤 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑣 , 𝑤 } ∈ 𝐸 ) ) ) |
11 |
|
fveqeq2 |
⊢ ( 𝑥 = 𝑣 → ( ( 𝐷 ‘ 𝑥 ) = 𝐾 ↔ ( 𝐷 ‘ 𝑣 ) = 𝐾 ) ) |
12 |
11
|
cbvrabv |
⊢ { 𝑥 ∈ 𝑉 ∣ ( 𝐷 ‘ 𝑥 ) = 𝐾 } = { 𝑣 ∈ 𝑉 ∣ ( 𝐷 ‘ 𝑣 ) = 𝐾 } |
13 |
12
|
eqeq1i |
⊢ ( { 𝑥 ∈ 𝑉 ∣ ( 𝐷 ‘ 𝑥 ) = 𝐾 } = ∅ ↔ { 𝑣 ∈ 𝑉 ∣ ( 𝐷 ‘ 𝑣 ) = 𝐾 } = ∅ ) |
14 |
|
rabeq0 |
⊢ ( { 𝑣 ∈ 𝑉 ∣ ( 𝐷 ‘ 𝑣 ) = 𝐾 } = ∅ ↔ ∀ 𝑣 ∈ 𝑉 ¬ ( 𝐷 ‘ 𝑣 ) = 𝐾 ) |
15 |
13 14
|
bitri |
⊢ ( { 𝑥 ∈ 𝑉 ∣ ( 𝐷 ‘ 𝑥 ) = 𝐾 } = ∅ ↔ ∀ 𝑣 ∈ 𝑉 ¬ ( 𝐷 ‘ 𝑣 ) = 𝐾 ) |
16 |
|
neqne |
⊢ ( ¬ ( 𝐷 ‘ 𝑣 ) = 𝐾 → ( 𝐷 ‘ 𝑣 ) ≠ 𝐾 ) |
17 |
16
|
ralimi |
⊢ ( ∀ 𝑣 ∈ 𝑉 ¬ ( 𝐷 ‘ 𝑣 ) = 𝐾 → ∀ 𝑣 ∈ 𝑉 ( 𝐷 ‘ 𝑣 ) ≠ 𝐾 ) |
18 |
17
|
3mix2d |
⊢ ( ∀ 𝑣 ∈ 𝑉 ¬ ( 𝐷 ‘ 𝑣 ) = 𝐾 → ( ∀ 𝑣 ∈ 𝑉 ( 𝐷 ‘ 𝑣 ) = 𝐾 ∨ ∀ 𝑣 ∈ 𝑉 ( 𝐷 ‘ 𝑣 ) ≠ 𝐾 ∨ ∃ 𝑣 ∈ 𝑉 ∀ 𝑤 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑣 , 𝑤 } ∈ 𝐸 ) ) |
19 |
18
|
a1d |
⊢ ( ∀ 𝑣 ∈ 𝑉 ¬ ( 𝐷 ‘ 𝑣 ) = 𝐾 → ( 𝐺 ∈ FriendGraph → ( ∀ 𝑣 ∈ 𝑉 ( 𝐷 ‘ 𝑣 ) = 𝐾 ∨ ∀ 𝑣 ∈ 𝑉 ( 𝐷 ‘ 𝑣 ) ≠ 𝐾 ∨ ∃ 𝑣 ∈ 𝑉 ∀ 𝑤 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑣 , 𝑤 } ∈ 𝐸 ) ) ) |
20 |
15 19
|
sylbi |
⊢ ( { 𝑥 ∈ 𝑉 ∣ ( 𝐷 ‘ 𝑥 ) = 𝐾 } = ∅ → ( 𝐺 ∈ FriendGraph → ( ∀ 𝑣 ∈ 𝑉 ( 𝐷 ‘ 𝑣 ) = 𝐾 ∨ ∀ 𝑣 ∈ 𝑉 ( 𝐷 ‘ 𝑣 ) ≠ 𝐾 ∨ ∃ 𝑣 ∈ 𝑉 ∀ 𝑤 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑣 , 𝑤 } ∈ 𝐸 ) ) ) |
21 |
10 20
|
jaoi |
⊢ ( ( ( ♯ ‘ { 𝑥 ∈ 𝑉 ∣ ( 𝐷 ‘ 𝑥 ) = 𝐾 } ) = 1 ∨ { 𝑥 ∈ 𝑉 ∣ ( 𝐷 ‘ 𝑥 ) = 𝐾 } = ∅ ) → ( 𝐺 ∈ FriendGraph → ( ∀ 𝑣 ∈ 𝑉 ( 𝐷 ‘ 𝑣 ) = 𝐾 ∨ ∀ 𝑣 ∈ 𝑉 ( 𝐷 ‘ 𝑣 ) ≠ 𝐾 ∨ ∃ 𝑣 ∈ 𝑉 ∀ 𝑤 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑣 , 𝑤 } ∈ 𝐸 ) ) ) |
22 |
1 3 5 6 2
|
frgrwopreg2 |
⊢ ( ( 𝐺 ∈ FriendGraph ∧ ( ♯ ‘ ( 𝑉 ∖ { 𝑥 ∈ 𝑉 ∣ ( 𝐷 ‘ 𝑥 ) = 𝐾 } ) ) = 1 ) → ∃ 𝑣 ∈ 𝑉 ∀ 𝑤 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑣 , 𝑤 } ∈ 𝐸 ) |
23 |
22
|
3mix3d |
⊢ ( ( 𝐺 ∈ FriendGraph ∧ ( ♯ ‘ ( 𝑉 ∖ { 𝑥 ∈ 𝑉 ∣ ( 𝐷 ‘ 𝑥 ) = 𝐾 } ) ) = 1 ) → ( ∀ 𝑣 ∈ 𝑉 ( 𝐷 ‘ 𝑣 ) = 𝐾 ∨ ∀ 𝑣 ∈ 𝑉 ( 𝐷 ‘ 𝑣 ) ≠ 𝐾 ∨ ∃ 𝑣 ∈ 𝑉 ∀ 𝑤 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑣 , 𝑤 } ∈ 𝐸 ) ) |
24 |
23
|
expcom |
⊢ ( ( ♯ ‘ ( 𝑉 ∖ { 𝑥 ∈ 𝑉 ∣ ( 𝐷 ‘ 𝑥 ) = 𝐾 } ) ) = 1 → ( 𝐺 ∈ FriendGraph → ( ∀ 𝑣 ∈ 𝑉 ( 𝐷 ‘ 𝑣 ) = 𝐾 ∨ ∀ 𝑣 ∈ 𝑉 ( 𝐷 ‘ 𝑣 ) ≠ 𝐾 ∨ ∃ 𝑣 ∈ 𝑉 ∀ 𝑤 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑣 , 𝑤 } ∈ 𝐸 ) ) ) |
25 |
|
difrab0eq |
⊢ ( ( 𝑉 ∖ { 𝑥 ∈ 𝑉 ∣ ( 𝐷 ‘ 𝑥 ) = 𝐾 } ) = ∅ ↔ 𝑉 = { 𝑥 ∈ 𝑉 ∣ ( 𝐷 ‘ 𝑥 ) = 𝐾 } ) |
26 |
12
|
eqeq2i |
⊢ ( 𝑉 = { 𝑥 ∈ 𝑉 ∣ ( 𝐷 ‘ 𝑥 ) = 𝐾 } ↔ 𝑉 = { 𝑣 ∈ 𝑉 ∣ ( 𝐷 ‘ 𝑣 ) = 𝐾 } ) |
27 |
|
rabid2 |
⊢ ( 𝑉 = { 𝑣 ∈ 𝑉 ∣ ( 𝐷 ‘ 𝑣 ) = 𝐾 } ↔ ∀ 𝑣 ∈ 𝑉 ( 𝐷 ‘ 𝑣 ) = 𝐾 ) |
28 |
26 27
|
bitri |
⊢ ( 𝑉 = { 𝑥 ∈ 𝑉 ∣ ( 𝐷 ‘ 𝑥 ) = 𝐾 } ↔ ∀ 𝑣 ∈ 𝑉 ( 𝐷 ‘ 𝑣 ) = 𝐾 ) |
29 |
|
3mix1 |
⊢ ( ∀ 𝑣 ∈ 𝑉 ( 𝐷 ‘ 𝑣 ) = 𝐾 → ( ∀ 𝑣 ∈ 𝑉 ( 𝐷 ‘ 𝑣 ) = 𝐾 ∨ ∀ 𝑣 ∈ 𝑉 ( 𝐷 ‘ 𝑣 ) ≠ 𝐾 ∨ ∃ 𝑣 ∈ 𝑉 ∀ 𝑤 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑣 , 𝑤 } ∈ 𝐸 ) ) |
30 |
29
|
a1d |
⊢ ( ∀ 𝑣 ∈ 𝑉 ( 𝐷 ‘ 𝑣 ) = 𝐾 → ( 𝐺 ∈ FriendGraph → ( ∀ 𝑣 ∈ 𝑉 ( 𝐷 ‘ 𝑣 ) = 𝐾 ∨ ∀ 𝑣 ∈ 𝑉 ( 𝐷 ‘ 𝑣 ) ≠ 𝐾 ∨ ∃ 𝑣 ∈ 𝑉 ∀ 𝑤 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑣 , 𝑤 } ∈ 𝐸 ) ) ) |
31 |
28 30
|
sylbi |
⊢ ( 𝑉 = { 𝑥 ∈ 𝑉 ∣ ( 𝐷 ‘ 𝑥 ) = 𝐾 } → ( 𝐺 ∈ FriendGraph → ( ∀ 𝑣 ∈ 𝑉 ( 𝐷 ‘ 𝑣 ) = 𝐾 ∨ ∀ 𝑣 ∈ 𝑉 ( 𝐷 ‘ 𝑣 ) ≠ 𝐾 ∨ ∃ 𝑣 ∈ 𝑉 ∀ 𝑤 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑣 , 𝑤 } ∈ 𝐸 ) ) ) |
32 |
25 31
|
sylbi |
⊢ ( ( 𝑉 ∖ { 𝑥 ∈ 𝑉 ∣ ( 𝐷 ‘ 𝑥 ) = 𝐾 } ) = ∅ → ( 𝐺 ∈ FriendGraph → ( ∀ 𝑣 ∈ 𝑉 ( 𝐷 ‘ 𝑣 ) = 𝐾 ∨ ∀ 𝑣 ∈ 𝑉 ( 𝐷 ‘ 𝑣 ) ≠ 𝐾 ∨ ∃ 𝑣 ∈ 𝑉 ∀ 𝑤 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑣 , 𝑤 } ∈ 𝐸 ) ) ) |
33 |
24 32
|
jaoi |
⊢ ( ( ( ♯ ‘ ( 𝑉 ∖ { 𝑥 ∈ 𝑉 ∣ ( 𝐷 ‘ 𝑥 ) = 𝐾 } ) ) = 1 ∨ ( 𝑉 ∖ { 𝑥 ∈ 𝑉 ∣ ( 𝐷 ‘ 𝑥 ) = 𝐾 } ) = ∅ ) → ( 𝐺 ∈ FriendGraph → ( ∀ 𝑣 ∈ 𝑉 ( 𝐷 ‘ 𝑣 ) = 𝐾 ∨ ∀ 𝑣 ∈ 𝑉 ( 𝐷 ‘ 𝑣 ) ≠ 𝐾 ∨ ∃ 𝑣 ∈ 𝑉 ∀ 𝑤 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑣 , 𝑤 } ∈ 𝐸 ) ) ) |
34 |
21 33
|
jaoi |
⊢ ( ( ( ( ♯ ‘ { 𝑥 ∈ 𝑉 ∣ ( 𝐷 ‘ 𝑥 ) = 𝐾 } ) = 1 ∨ { 𝑥 ∈ 𝑉 ∣ ( 𝐷 ‘ 𝑥 ) = 𝐾 } = ∅ ) ∨ ( ( ♯ ‘ ( 𝑉 ∖ { 𝑥 ∈ 𝑉 ∣ ( 𝐷 ‘ 𝑥 ) = 𝐾 } ) ) = 1 ∨ ( 𝑉 ∖ { 𝑥 ∈ 𝑉 ∣ ( 𝐷 ‘ 𝑥 ) = 𝐾 } ) = ∅ ) ) → ( 𝐺 ∈ FriendGraph → ( ∀ 𝑣 ∈ 𝑉 ( 𝐷 ‘ 𝑣 ) = 𝐾 ∨ ∀ 𝑣 ∈ 𝑉 ( 𝐷 ‘ 𝑣 ) ≠ 𝐾 ∨ ∃ 𝑣 ∈ 𝑉 ∀ 𝑤 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑣 , 𝑤 } ∈ 𝐸 ) ) ) |
35 |
7 34
|
mpcom |
⊢ ( 𝐺 ∈ FriendGraph → ( ∀ 𝑣 ∈ 𝑉 ( 𝐷 ‘ 𝑣 ) = 𝐾 ∨ ∀ 𝑣 ∈ 𝑉 ( 𝐷 ‘ 𝑣 ) ≠ 𝐾 ∨ ∃ 𝑣 ∈ 𝑉 ∀ 𝑤 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑣 , 𝑤 } ∈ 𝐸 ) ) |